流体力学与飞行力学

基于改进差分进化算法的飞行控制律评估方法

  • 陈云翔 ,
  • 李琳 ,
  • 李千 ,
  • 纪小柠
展开
  • 1. 空军工程大学装备管理与安全工程学院, 陕西 西安 710051;
    2. 空军装备部, 北京 100843;
    3. 空军指挥学院, 北京 100097
陈云翔 男, 博士, 教授, 博士生导师。主要研究方向: 军用装备可靠性、 安全性评估。 Tel: 029-84789661 E-mail: cyx87793@163.com;李琳 女, 博士研究生。主要研究方向: 军用飞机控制系统评估及其安全性分析。 Tel: 029-84789661 E-mail: lliner928@yahoo.cn;李千 男, 博士后, 工程师。主要研究方向: 飞机适航性、 安全性评估。 E-mail: roben203@163.com;纪小柠 女, 硕士, 讲师。主要研究方向: 军事装备理论研究。 E-mail: samathaji@hotmail.com

收稿日期: 2012-07-02

  修回日期: 2012-08-23

  网络出版日期: 2012-09-05

基金资助

国防预研项目(51327020104)

Evaluation Method for Flight Control Law Based on Modified Differential Evolution Algorithm

  • CHEN Yunxiang ,
  • LI Lin ,
  • LI Qian ,
  • JI Xiaoning
Expand
  • 1. The Equipment Management and Safety Engineering Institute, Air Force Engineering University, Xi'an 710051, China;
    2. Department of Air Force Equipment, Beijing 100843, China;
    3. China Air Force Command Institute, Beijing 100097, China

Received date: 2012-07-02

  Revised date: 2012-08-23

  Online published: 2012-09-05

Supported by

National Defence Pre-research Foundation (51327020104)

摘要

针对基本差分进化(DE)算法收敛慢、易陷入局部最优的问题,提出了基于混沌理论(CT)与高斯扰动的DE算法,进而通过典型测试函数仿真证明了该方法在收敛速度与全局搜索能力方面均优于基本型和其他改进型DE算法。在此基础上构建了基于DE算法的飞行控制律评估流程与实施步骤。实例表明,该方法克服了传统评估方法的缺陷,可在全飞行包线范围内及所有可预测参数摄动情况下对飞行控制律进行快速、准确的评估。

本文引用格式

陈云翔 , 李琳 , 李千 , 纪小柠 . 基于改进差分进化算法的飞行控制律评估方法[J]. 航空学报, 2013 , 34(6) : 1261 -1268 . DOI: 10.7527/S1000-6893.2013.0230

Abstract

An evaluation method for a fight control law based on modified differential evolution (DE) algorithm is provided. A new modified method based on chaos theory (CT) and Gaussian disturbance (GD) is proposed to deal with the problem of slow search and premature convergence in the basic DE algorithm. Compared with the basic DE and other DE methods, experimental simulations show that the proposed method can not only significantly speed up the convergence, but also effectively solve the premature problem. And then the process to proceed the evaluation of the flight control law is put forward. Finally, the new method is applied to the evaluation of a flight control law. Result shows that the new method overcomes the limitations of the traditional evolution method, and can achieve satisfied results both for the whole flight envelope and for all predictable parameter perturbations.

参考文献

[1] Liu L, Che J, Tang Q, et al. Study on the advanced approaches for clearance of modern flight control law. Flight Dynamics, 2007, 25(1):1-4. (in Chinese) 刘林, 车军, 唐强, 等. 现代飞行控制律评估与确认先进方法研究.飞行力学, 2007, 25(1): 1-4.

[2] Iqbal S. Analysis of flight test manoeuvres using bifurcation analysis methods in support of flight clearance. AIAA Guidance, Navigation, and Control Conference, 2003: 1-16.

[3] Lowenberg M. Aircraft control law clearance analysis using bifurcation and continuation methods. AIAA Guidance, Navigation, and Control Conference, 2003: 1008-1022.

[4] Chriatopher F, Andras V, Samir B, et al. Advanced techniques for clearance of flight control laws. Berlin: Springer-Verlag, 2002: 313-333.

[5] Selier M, Korte U, Fielding C, et al. New analysis techniques for clearance of flight control laws. AIAA Guidance, Navigation and Control Conference Exhibit, 2003, 976-984.

[6] Glover K, Vinnicombe G, Papageorgiou G. Guaranteedmulti-loop stability margins and the gapmetric. The 38th IEEE Conference on Decision and Control, 2000: 4084-4085.

[7] Liu L, Ji D H, Tang Q. v-gap metric and its application to clearance of flight control laws. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 930-934. (in Chinese) 刘林, 纪多红, 唐强. ν-gap度量及其在飞行控制律评估中的应用. 航空学报, 2007, 28(4): 930-934.

[8] Lv Q X, Liu L, Tang Q. Robust stability clearance of flight control laws in all flight envelope. Flight Dynamics, 2008, 26(5): 32-39. (in Chinese) 吕全喜, 刘林, 唐强. 飞行控制律全包线鲁棒性稳定性评估.飞行力学, 2008, 26(5): 32-39.

[9] Liu L. Advanced verification and clearance technique for modern flight. Beijing: National Defense Industry Press, 2010: 156-157. (in Chinese) 刘林.现代飞机控制系统的评估与确认方法.北京:国防工业出版社, 2010: 156-157.

[10] Wang Y J, Zhang J S. Global optimization by an improved differential evolutionary algorithm. Applied Mathematics and Computation, 2007, 188(1): 669-680.

[11] Noman N, Iba H. Enhancing differential evolution performance with local search for high dimensional function optimization. Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. Washington, D.C.: ACM, 2005: 967-974.

[12] Noman N, Iba H. Accelerating differential evolution using an adaptive local search. IEEE Transactions on Evolutionary Computation, 2008, 12(1):107-125.

[13] Tan Y, Tan G Z, Tu L. Differential evolution algorithm with local search strategy. Computer Engineering and Applications, 2009, 45(7): 56-58. (in Chinese) 谭跃, 谭冠政, 涂立. 具有局部搜索策略的差分进化算法. 计算机工程与应用, 2009, 45(7): 56-58.

[14] Caponetto R, Fortuna L, Fazzino S, et al. Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2003, 7(3): 289-304.

[15] Sun C F. Differential evolution and its application on the optimal scheduling of electrical power system. Wuhan: Huazhong University of Science and Technology, 2010. (in Chinese) 孙成富. 差分进化算法及其在电力系统调度优化中的应用研究. 武汉:华中科技大学, 2010.

[16] Tian D P. An adaptive genetic algorithm combined with chaos searching. Journal of Shanxi University of Science & Technology, 2008, 6(26): 65-71.

文章导航

/