材料工程与机械制造

漂浮基空间机器人捕获卫星过程动力学模拟及捕获后混合体运动的RBF神经网络控制

  • 梁捷 ,
  • 陈力
展开
  • 1. 福州大学 机械工程及自动化学院, 福建 福州 350108;
    2. 中国空气动力研究与发展中心, 四川 绵阳 621000
梁捷 男, 博士研究生。主要研究方向: 航天器系统动力学与控制, 飞行器导航、 制导与控制, 计算流体力学。 Tel: 0591-87893261 E-mail: myamoy81@sina.com;陈力 男, 博士, 教授, 博士生导师。主要研究方向: 多体系统动力学, 航天器系统动力学与控制, 非线性振动及振动控制。 Tel: 0591-87893261 E-mail: chnle@fzu.edu.cn

收稿日期: 2012-05-23

  修回日期: 2012-08-16

  网络出版日期: 2013-04-23

基金资助

国家自然科学基金 (11072061,10672040)

Dynamics Modeling for Free-floating Space-based Robot During Satellite Capture and RBF Neural Network Control for Compound Body Stable Movement

  • LIANG Jie ,
  • CHEN Li
Expand
  • 1. Department of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2012-05-23

  Revised date: 2012-08-16

  Online published: 2013-04-23

Supported by

National Natural Science Foundation of China (11072061, 10672040)

摘要

讨论了漂浮基空间机器人在轨捕获目标卫星过程的碰撞动力学建模,以及捕获操作结束后空间机器人与卫星混合体的稳定控制问题。首先采用多刚体动力学建模方法并结合空间机器人捕获目标卫星过程中的碰撞动力学特性,建立了漂浮基空间机器人在轨捕获漂浮卫星过程的动力学模型,并在此基础上计算出完成捕获操作后空间机器人与目标卫星混合体关节的运动速度。然后针对卫星及空间机器人系统惯性参数均是未知的复杂情况,应用上述模型、神经网络控制理论和Lyapunov稳定性理论,设计了空间机器人与卫星混合体在捕获过程碰撞冲击影响下稳定运动的高斯径向基函数神经网络控制方案,以达到对捕获卫星的有效控制。此外,高斯径向基函数神经网络控制方案具有不需要测量和反馈载体位置、移动速度与加速度的显著优点。系统数值仿真证实了上述控制方案的有效性。

本文引用格式

梁捷 , 陈力 . 漂浮基空间机器人捕获卫星过程动力学模拟及捕获后混合体运动的RBF神经网络控制[J]. 航空学报, 2013 , 34(4) : 970 -978 . DOI: 10.7527/S1000-6893.2013.0157

Abstract

This paper discusses the collision dynamics modeling of a free-floating space-based robot in the process of on-orbit satellite capturing, and it also analyzes the stability control for the compounded body of the space-based robot and target after the capturing operation is completed. First the method of multibody system dynamics modeling is employed in combination with the characteristics of collision dynamics of the space-based robot while it captures the target satellite to set up a dynamics model for the free-floating space-based robot during its on-orbit capture of the floating satellite. Based on it, the movement speed for the compounded body of the space-based robot and target is calculated. In view of the fact that for the inertia parameters of both the satellite and the space-based robot system are unknown, the model and the theory of neural network control and Lyapunov stability theory are used to design a Gaussian radial basis function neural network control scheme for the compounded body to move stably under the influence of collision and impact during the capturing process. Thus, the effective control is realized for capturing a target satellite. The Gaussian radial basis function neural network control scheme has the obvious advantages of requiring no feedback and measurement of the position,velocity,acceleration,attitude angle velocity and attitude angle acceleration of the floating base. Finally, the validity and applicability of the control scheme are manifested by system numerical simulation.

参考文献

[1] Isenberg D R, Kakad Y P. Quaternion based computed-torque and feed-forward tracking controllers for a space robot. Proceedings of the Annual South Eastern Symposium on System Theory, 2010: 232-236.

[2] Abiko S, Hirzinger G. An adaptive control for a free-floating space robot by using inverted chain approach. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007: 2236-2241.

[3] Gu Y L, Xu Y S. A normal form augmentation approach to adaptive control of space robot systems. Journal of the Dynamics and Control, 1995, 5(3): 275-294.

[4] Guo Y S, Chen L. Adaptive robust control for free-floating space robot system with dual-arms to track desired trajectory in joint space. Journal of System Simulation, 2009, 21(3): 625-633. (in Chinese) 郭益深, 陈力. 双臂空间机器人的自适应鲁棒性联合控制. 系统仿真学报, 2009, 21(3): 625-633.

[5] Nanos K. On the use of free-floating space robots in the presence of angular momentum. Intelligent Service Robotics, 2011, 4(1): 3-15.

[6] Ding X L, Yu Y S. A multi-propeller and multi-function aero-robot and its motion planning of leg-wall-climbing. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 2075-2086. (in Chinese) 丁希仑, 俞玉树.一种多旋翼多功能空中机器人及其腿式壁面行走运动规划. 航空学报, 2010, 31(10): 2075-2086.

[7] Ge X S, Chen L Q, Lv J. Nonholonomic motion planning of a space manipulator system using genetic algorithm. Journal of Astronautics, 2005, 26(3): 262-266.(in Chinese) 戈新生, 陈立群, 吕杰. 空间机械臂非完整运动规划的遗传算法研究. 宇航学报, 2005, 26(3): 262-266.

[8] Wang C Q, Zhang C L. Dynamic control of a free-floating flexible dual-arm space robotic system. Chinese Journal of Mechanical Engineering, 2007, 43(10): 196-200. (in Chinese) 王从庆, 张承龙.自由浮动柔性双臂空间机器人系统的动力学控制. 机械工程学报, 2007, 43(10): 196-200.

[9] Hong Z D, Yun C, Chen L. Modeling and trajectory tracking control of a free-floating space robot with flexible manipulators. Robot, 2007, 29(1): 92-96. (in Chinese) 洪在地, 贠超, 陈力. 柔性臂漂浮基空间机器人建模与轨迹跟踪控制. 机器人, 2007, 29(1): 92-96.

[10] Li Q, Wang T S. Adaptive mode method in inverse dynamics of a rotating flexible manipulator with high-frequency excitation. Chinese Journal of Space Science, 2008, 28(4): 345-349. (in Chinese) 李青, 王天舒.高频激励下旋转柔性臂逆动力学模态自适应方法研究. 空间科学学报, 2008, 28(4): 345-349.

[11] Liang J, Chen L. Improved nonlinear feedback control for free-floating space-based robot with time-delay based on predictive and approximation of taylor series. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 163-169. (in Chinese) 梁捷, 陈力.具有时延的漂浮基空间机器人基于泰勒级数预测、逼近的改进非线性反馈控制. 航空学报, 2012, 33(1): 163-169.

[12] Liang J, Chen L. Fuzzy logic adaptive compensation control for dual-arm space robot based on computed torque controller to track desired trajectory in inertia space. Engineering Mechanics, 2010, 27(11): 221-228. (in Chinese) 梁捷, 陈力. 基于标称计算力矩控制器的双臂空间机器人惯性空间轨迹跟踪的模糊自适应补偿控制.工程力学, 2010, 27(11): 221-228.

[13] Pan J, Cai G P. Particle swarm optimizer for optimal locations of actuators of a trussed structure. Engineering Mechanics, 2009, 26(12): 35-39. (in Chinese) 潘继, 蔡国平. 桁架结构作动器优化配置的粒子群算法. 工程力学, 2009, 26(12): 35-39.

[14] Oda M, Kibe K, Yamagata F. ETS-VII, space robot in-orbit experiment satellite. Proceedings of the IEEE International Conference on Robotics and Automation, 1996: 739-744.

[15] Whelan D A. DARPA orbital express program: effecting a revolution in space-based systems. Proceedings of the International Society for Optical Engineering, 2004: 48-56.

[16] Slotin J E, Li W P. On the adaptive control of robot manipulators. Journal of the Robots Research, 1987, 6(3): 49-59.

文章导航

/