电子与控制

基于单个长基线干涉仪的运动单站直接定位

  • 张敏 ,
  • 郭福成 ,
  • 周一宇
展开
  • 国防科学技术大学 电子科学与工程学院, 湖南 长沙 410073
张敏,男,博士研究生。主要研究方向:无源定位、跟踪滤波技术。Tel:0731-84573490,E-mail:zhangmin1984@126.com;郭福成,男,博士,副教授,硕士生导师。主要研究方向:无源定位、跟踪滤波、信号处理技术等。Tel:0731-84573490,E-mail:gfcly@21cn.com;周一宇,男,博士,教授,博士生导师。主要研究方向:无源定位技术、综合电子信息技术等。Tel:0731-84573490,E-mail:zhouyiyu@sohu.com

收稿日期: 2012-03-13

  修回日期: 2012-07-13

  网络出版日期: 2012-07-30

基金资助

国家"863"计划(2011AA7072043);国防科技重点实验室基金(9140C860304)

A Single Moving Observer Direct Position Determination Method Using a Long Baseline Interferometer

  • ZHANG Min ,
  • GUO Fucheng ,
  • ZHOU Yiyu
Expand
  • School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2012-03-13

  Revised date: 2012-07-13

  Online published: 2012-07-30

Supported by

National High-tech Research and Development Program of China (2011AA7072043);National Defense Key Laboratory Foundation of China (9140C860304)

摘要

针对以往单站无源定位系统中采用的多通道干涉仪或阵列测向系统复杂、易受通道间幅相不一致性影响等缺点,提出了一种基于信号子空间分解的运动单站单个长基线干涉仪(LBI)直接定位(DPD)方法。该方法采用量子粒子群优化(QPSO)方法获得定位初值,再利用Newton迭代方法得到精估计值。仿真结果表明:增加观测器的机动性,可对辐射源实现快速无模糊的定位;定位性能在较高信噪比(SNR)下可接近定位误差的克拉美-罗下限(CRLB),在低信噪比下优于多通道干涉仪仅测角(BO)和长基线相位差变化率定位方法。

本文引用格式

张敏 , 郭福成 , 周一宇 . 基于单个长基线干涉仪的运动单站直接定位[J]. 航空学报, 2013 , 34(2) : 378 -386 . DOI: 10.7527/S1000-6893.2013.0043

Abstract

In view of the complex structures and amplitude-phase inconsistencies among receiving channels in single observer localization systems using multi-channel interferometers or arrays, a direct position determination (DPD) method is advanced in this paper based on subspace decomposition using a long baseline interferometer (LBI). A quantum-behaved particle swarm optimization (QPSO) initialization algorithm is designed and then the Newton method is used to improve the estimation. Simulation results show that observer maneuver should be taken into consideration to achieve fast unambiguous results. The proposed method can approach Cramer-Rao lower bound (CRLB) at high signal noise rate (SNR) and achieve better performance than the bearing-only (BO) method using multi-channel interferometers and the phase difference rate method by LBI under low SNR.

参考文献

[1] Sun Z K, Guo F C, Feng D W, et al. Passive location and tracking technology by single observer. Beijing: National Defense Industry Press, 2008: 1-29. (in Chinese) 孙仲康, 郭福成, 冯道旺, 等. 单站无源定位跟踪技术. 北京: 国防工业出版社, 2008: 1-29.
[2] Rong Y, Pek H F. RF emitter geolocation using amplitude comparison with auto-calibrated relative antenna gains. IEEE Transactions on Aerospace and Electronic System, 2011, 47(3): 2098-2110.
[3] Poisel R A. Electronic warfare target location methods. Qu X X, Luo Y, translated. Beijing: Publishing House of Electronics Industry, 2008: 24-68. (in Chinese) Poisel R A. 电子战目标定位方法. 屈晓旭, 罗勇, 译. 北京: 电子工业出版社, 2008: 24-68.
[4] Shieh C S, Lin C T. Direction of arrival estimation based on phase differences using neural fuzzy network. IEEE Transactions on Antennas and Propagation, 2000, 48(7): 1115-1124.
[5] Lance S, Don M, Mohammad S. Interference cancellation and signal direction finding with low complexity. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1052-1063.
[6] Macphie R H, Yoon T H. On using the compound interferometer to obtain the power pattern of a conventional receiving array. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 3356-3359.
[7] Zhou Y Q, Huangfu K. Solving ambiguity problem of digitized multi-baseline interferometer under noisy circumstance. Journal on Communications, 2005, 26(8): 16-21. (in Chinese) 周亚强, 皇甫堪. 噪扰条件下数字式多基线相位干涉仪解模糊问题. 通信学报, 2005, 26(8): 16-21.
[8] Gong X Y, Yuan J Q, Su L H. A multi-pare unwrap ambiguity of interferometer array for estimation of direction of arrival. Journal of Electronics & Information Technology, 2006, 28(1): 55-59. (in Chinese) 龚享铱, 袁俊泉, 苏令华. 基于相位干涉仪阵列多组解模糊的波达角估计算法研究. 电子与信息学报, 2006, 28(1): 55-59.
[9] Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.
[10] Guo F C, Jia X J, Huangfu K. A single observer passive localization method using phase difference changing rate only and its error analysis. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1090-1095. (in Chinese) 郭福成, 贾兴江, 皇甫堪. 仅用相位差变化率的机载单站无源定位方法及其误差分析. 航空学报, 2009, 30(6): 1090-1095.
[11] Amar A, Weiss A J. Localization of narrowband radio emitters based on Doppler frequency shifts. IEEE Transactions on Signal Processing, 2008, 56(11): 5500-5508.
[12] Weiss A J. Direct geolocation of wideband emitters based on delay and Doppler. IEEE Transactions on Signal Processing, 2011, 59(6): 2513-2521.
[13] Oispuu M, Nickel U. Direct detection and position determination of multiple sources with intermittent emission. Signal Processing, 2010, 90: 3056-3064.
[14] Li C, Liao G S, Li Y B, A DF method for the improved correlative interferometer. Journal of Xidian University, 2006, 33(3): 400-403. (in Chinese) 李淳, 廖桂生, 李艳斌. 改进的相关干涉仪测向处理方法. 西安电子科技大学学报, 2006, 33(3): 400-403.
[15] Wang Y L, Chen H, Peng Y N, et al. The theories and algorithms of spatial spectrum estimation, Beijing: Tsinghua University Press, 2004: 26-30. (in Chinese) 王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法. 北京: 清华大学出版社, 2004: 26-30.
[16] Guo F C. A fixed observer passive location method based on multi-level grid search. Signal Processing, 2008, 24(6): 927-930. (in Chinese) 郭福成. 基于多级网格搜索的固定单站无源定位方法. 信号处理, 2008, 24(6): 927-930.
[17] Antoniou A, Lu W S. Practical optimization algorithms and engineering applications. New York: Springer, 2007: 128-137.
[18] van de Frans B. A new locally convergent particle swarm optimizer. IEEE International Conference on Systems, Man and Cybernetics, 2002: 96-101.
[19] Sun J, Fang W, Wu X J, et al. Quantum-behaved particle swarm optimization: theory and application. Beijing: Tsinghua University Press, 2011: 41-51. (in Chinese) 孙俊, 方伟, 吴小俊, 等. 量子行为粒子群优化: 原理及其应用. 北京: 清华大学出版社, 2011: 41-51.
[20] Kay S M. Fundamentals of statistical signal processing, estimation theory. Englewood Cliffs, New Jersey: Prentice Hall, 1993: 30-36.
[21] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech, Signal Processing, 1989, 37(5): 720-741.
文章导航

/