材料工程与机械制造

面向壁面剪应力测量的底层隔板微敏感结构设计与制造

  • 马骋宇 ,
  • 马炳和 ,
  • 孙海浪 ,
  • 庄成乾
展开
  • 西北工业大学 空天微纳系统教育部重点实验室, 陕西 西安 710072
马骋宇 男, 博士研究生。主要研究方向: 压阻式水下壁面剪应力传感器设计研发与测试计量。 Tel: 029-88491252 E-mail: 838373840@163.com;马炳和 男, 博士, 教授, 博士生导师。主要研究方向: MEMS设计与建模、 航空应用微系统。 Tel: 029-88492847 E-mail: mabh@nwpu.edu.cn

收稿日期: 2012-05-23

  修回日期: 2012-07-03

  网络出版日期: 2013-04-23

基金资助

国家自然科学基金(50775188)

Design and Fabrication of Sensitive Elements of Sublayer Fence for Wall Shear Stress Sensor

  • MA Chengyu ,
  • MA Binghe ,
  • SUN Hailang ,
  • ZHUANG Chengqian
Expand
  • Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2012-05-23

  Revised date: 2012-07-03

  Online published: 2013-04-23

Supported by

National Natural Science Foundation of China (50775188)

摘要

采用MEMS技术加工的底层隔板能够为壁面剪应力的测量提供新的手段。利用有限元法(FEM)建模仿真、正交实验设计以及各因素的极差分析,考查了微敏感结构宽度、厚度和凸出壁面高度对底层隔板固有频率和压阻灵敏度的影响规律,完成了底层隔板的结构优化设计。仿真结果显示:微敏感结构厚度对隔板固有频率和灵敏度影响最大,提升敏感结构高度能够有效提高压阻灵敏度,固有频率和压阻灵敏度受微敏感结构宽度变化影响很小。基于绝缘体上硅技术,利用电感耦合等离子体刻蚀工艺形成底层隔板结构,反应离子刻蚀工艺完成对敏感结构的释放,所加工底层隔板的整体尺寸为5.9 mm×10.1 mm×0.39 mm。底层隔板的动态特性测试表明样件固有频率为1 453.1 Hz,与有限元仿真结果的最大偏差为4.4%。

本文引用格式

马骋宇 , 马炳和 , 孙海浪 , 庄成乾 . 面向壁面剪应力测量的底层隔板微敏感结构设计与制造[J]. 航空学报, 2013 , 34(4) : 963 -969 . DOI: 10.7527/S1000-6893.2013.0052

Abstract

MEMS sublayer fence provides a new method for wall shear stress measurement. In order to determine the influence of a fence's structural parameters on its natural frequency and piezoresistive sensitivity, the finite element method (FEM), orthogonal experimental design, and range analysis are adopted to optimize the parameters of the fence. The simulation results demonstrate that the natural frequency and sensitivity of a fence are more easily affected by its thickness than other parameters. Piezoresistive sensitivity can be improved more effectively than natural frequency by increasing the height of a sensitive element. The width of the element has less impact on the natural frequency and sensitivity of the fence. Inductive couple plasma etching process is used to form the structure of a sensitive element. The releasing process of the fence is accomplished by reactive ion etching technology. The dimension of the sublayer fence is 5.9 mm×10.1 mm×0.39 mm. Dynamic measurement results show that the natural frequency of the fence is 1 453.1 Hz, featuring a deviation of less than 4.4% as compared with finite element simulation.

参考文献

[1] Ma B H, Ren J Z, Deng J J, et al. Flexible thermal sensor array on PI film substrate for underwater applications. 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems(MEMS), 2010: 679-682.
[2] Ma B H, Zhao J G, Deng J J, et al. Fabrication of flexible hot film sensor array and its optimization. Optics and Precision Engineering, 2009, 17(8): 1971-1977. (in Chinese) 马炳和, 赵建国, 邓进军, 等. 全柔性热膜微传感器阵列制造工艺及性能优化. 光学精密工程, 2009, 17(8): 1971-1977.
[3] Lv H F, Jiang C Y, Deng J J, et al. Design of micro sensor for wall shear stress measurement. Journal of Mechanical Engineering, 2010, 46(24): 54-60. (in Chinese) 吕海峰, 姜澄宇, 邓进军, 等. 用于壁面切应力测量的微传感器设计. 机械工程学报, 2010, 46(24): 54-60.
[4] Hiroshi H. A miniature, directional surface-fence gage. AIAA Journal, 1985, 23(8): 1195-1196.
[5] Hiroshi H. A miniature, directional surface-fence gage for three-dimensional turbulent boundary layer measurements. AIAA-1983-1722, 1983.
[6] Patel V C. Calibration of the Preston tube and limitations on its use in pressure gradients. Journal of Fluid Mechanics, 1965, 23(1): 185-208.
[7] Papen T, Steffes H, Ngo H D, et al. A micro surface fence probe for the application in flow reversal areas. Sensors and Actuators A: Physical, 2002, 97(8): 264-270.
[8] Schober M, Obermeier E, Pirskawetz S, et al. A MEMS skin-friction sensor for time resolved measurements in separated flows. Experiments in Fluids, 2004, 36(4): 593-599.
[9] Schiffer M, Obermeier E, Grewe F, et al. AeroMEMS surface fence for wall shear stress measurements in turbulent flows. 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.
[10] Sun H L. Piezoresistive underwater micro wall shear stress sensor technology. Xi'an: School of Mechanical Engineering, Northwestern Polytechnical University, 2012.(in Chinese) 孙海浪. 压阻式水下微型壁面剪应力传感器技术. 西安: 西北工业大学机电学院, 2012.
[11] Yong X, Yu C T. Selective deposition of parylene C for underwater shear stress sensors. 12th International Conference on Solid-State Sensors, Actuators and Microsystems, 2003.
[12] Wang X D, Wang T, Li N, et al. Resonance frequency measuring technique of MEMS microstructures. Chinese Journal of Sensors and Actuators, 2006, 19(5): 1538-1541. (in Chinese) 王晓东, 王涛, 李楠, 等. 一种MEMS微结构谐振频率的测试技术. 传感技术学报, 2006, 19(5): 1538-1541.
[13] Kiesewetter L, Zhang J M, Houdeau D, et al. Determination of Young's moduli of micromechanical thin films using the resonance method. Sensors and Actuators A: Physical, 1992, 35(2): 153-159.
[14] Liu M Y, Tian W J, Zhang S J. Study on infrared detection techniques using the micromechanical silicon cantilever. Acta Photonica Sinica, 2004, 33(3): 371-374.(in Chinese) 刘明月, 田维坚, 张少君. 硅微机械悬臂梁红外辐射热探技术的研究. 光子学报, 2004, 33(3): 371-374.
[15] Liu Y M, Tian W J, Zhang S J. Determination of Young's modulus of micromechanical silicon films using an acoustic excitation and optical detection resonance method. Key Engineering Materials, 2005, 295: 57-64.
文章导航

/