短舱扰流片对运输机增升装置气动特性的影响
收稿日期: 2012-02-17
修回日期: 2012-03-28
网络出版日期: 2013-01-19
基金资助
国家自然科学基金(10972120,10932005)
Nacelle Strake’s Aerodynamic Characteristics Effects on High-lift Configuration of Transport Aircraft
Received date: 2012-02-17
Revised date: 2012-03-28
Online published: 2013-01-19
Supported by
National Natural Science Foundation of China (10972120, 10932005)
以民用运输机增升装置复杂增升构型气动设计为背景,针对短舱扰流片对增升构型气动性能的影响,借助数值模拟对流动控制效果和影响机理进行研究。数值结果表明:合理的扰流片设计可以明显改善增升装置的气动特性,提高最大升力系数0.3以上,增大失速迎角3°左右。短舱扰流片安装参数研究表明:短舱扰流片产生旋涡强度对其推迟失速的效果有明显影响;在所研究的范围内,短舱扰流片弦向位置明显影响扰流片的当地来流迎角,进而改变所产生旋涡的强度;扰流片的周向安装角主要影响扰流片的来流强度,同样影响所产生旋涡的强度;扰流片面积对提高升力系数贡献不大,主要影响失速形态。
张文升 , 陈海昕 , 张宇飞 , 符松 , 陈迎春 , 李亚林 , 周涛 . 短舱扰流片对运输机增升装置气动特性的影响[J]. 航空学报, 2013 , 34(1) : 76 -85 . DOI: 10.7527/S1000-6893.2013.0010
The present paper focuses on the mechanism investigation and parametric analysis of the nacelle strake mounted on the high-lift configuration of civil transport aircraft. Numerical simulation is carried out for this research. Results show that appropriate design of strake could greatly improve the aerodynamics performance of the high-lift configuration. The maximum lift coefficient can be increased by least 0.3 and the angle of attack can be increased by 3°. Through parametric analysis of the nacelle strake, it’s found that the strength of the vortex generated by the strake is a key factor of its stall delay effect. In the research, influences of the installation parameters of the inboard strake are that through affecting the strake’s local angle of attack, the axial location of the strake controls the strength of the vortex; the circumferential angle affects the strake’s incoming flow speed, and then controls the strength of strake’s wake; the area of the strake nearly has no effect on lift coefficient of high-lift configuration, it mainly affects the stall behaviors of the high-lift configuration.
[1] van Dam C P. The aerodynamic design of multi-element high-lift systems for transport airplanes. Progress in Aerospace Sciences, 2002, 38(2): 101-144.
[2] Qiu Y S, Bai J Q, Huang L, et al. Study on influence of wing-mounted engine nacelle on aerodynamic performance of high-lift system. Aeronautical Computing Technique, 2010, 40(6): 86-89. (in Chinese) 邱亚松, 白俊强, 黄琳, 等. 翼吊发动机短舱对增升装置气动特性影响研究. 航空计算技术, 2010, 40(6): 86-89.
[3] Rudnik R. Stall behaviour of the EUROLIFT high lift configurations. AIAA-2008-836, 2008.
[4] Geyr H F, Schade N, vd Burg J W, et al. CFD prediction of maximum lift effects on realistic high-lift-commercial-aircraft-configurations within the European project EUROLIFT II. AIAA-2007-4299, 2007.
[5] Hansen H, Thiede P, Moens F, et al. Overview about the European high lift research programme EUROLIFT. AIAA-2004-767, 2004.
[6] Rudnik R, Geyr H F. The European high lift project EUROLIFT II-objectives, approach, and structure. AIAA-2007-4296, 2007.
[7] Qiu Y S, Bai J Q, Li Y L, et al. Study on influence of complex geometry details on the aerodynamic performance of high-lift system. Acta Aeronautica et Astronautica Sinica, 2012, 33(3): 4214-4219. (in Chinese) 邱亚松, 白俊强, 李亚林, 等. 复杂几何细节对增升装置气动性能影响研究. 航空学报, 2012, 33(3): 4214-4219.
[8] Slotnick J P, Hannon J A, Chaffin M. Overview of the first AIAA CFD high lift prediction workshop. AIAA-2011-862, 2011.
[9] Chen H X, Fu S, Li F W. Navier-Stokes simulations for transport aircraft wing/body high-lift configurations. Journal of Aircraft, 2003, 40(5): 883-890.
[10] Eliasson P, Catalano P, Le Pape M C, et al. Improved CFD predictions for high lift flows in the European project EUROLIFT II. AIAA-2007-4303, 2007.
[11] Sang W M, Li F W. Numerical analysis of flows around 3-D high-lift system by adaptive cartesian grid method. Acta Mechanica Sinica, 2005, 37(1): 80-86. (in Chinese) 桑为民, 李凤蔚. 采用自适应直角网格计算三维增升装置绕流. 力学学报, 2005, 37(1): 80-86.
[12] Shi Y B, Wang H J, Li J. Exploring a feasible method of CFD simulation of high-lift aircraft configuration using patched-grid generation method and multi-grid technique. Journal of Northwestern Polytechnical University, 2010, 28(1): 143-146. (in Chinese) 石永彬, 王豪杰, 李杰. 基于面搭接多重网格技术的全机增升装置绕流数值模拟. 西北工业大学学报, 2010, 28(1): 143-146.
[13] Kanazaki M, Yokokawa Y, Murayama M, et al. Efficient design exploration of nacelle chine installation in wind tunnel testing. AIAA-2008-155, 2008.
[14] Yokokawa Y, Murayama M, Kanazaki M, et al. Investigation and improvement of high-lift aerodynamic performances in lowspeed wind tunnel testing. AIAA-2008-350, 2008.
[15] Yokokawa Y, Murayama M, Uchida H, et al. Aerodynamic influence of a half-span model installation for high-lift configuration experiment. AIAA-2010-684, 2010.
/
〈 | 〉 |