材料工程与机械制造

头盔伺服系统的主动柔顺控制

  • 李鹏 ,
  • 顾宏斌 ,
  • 吴东苏 ,
  • 刘晖
展开
  • 南京航空航天大学 民航学院, 江苏 南京 210016

收稿日期: 2011-08-09

  修回日期: 2011-08-29

  网络出版日期: 2012-05-24

基金资助

国家自然科学基金(61039002);江苏省2010年度普通高校研究生科研创新计划(CX10B_103Z);南京航空航天大学基本科研业务费专项科研项目(NS2010180)

Active Compliance Control of Helmet Mounted Display with Parallel Manipulator

  • LI Peng ,
  • GU Hongbin ,
  • WU Dongsu ,
  • LIU Hui
Expand
  • College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2011-08-09

  Revised date: 2011-08-29

  Online published: 2012-05-24

Supported by

National Natural Science Foundation of China (61039002); Funding of Jiangsu Innovation Program for Graduate Education (CX10B_103Z); NUAA Research Funding (NS2010180)

摘要

对头盔伺服系统(HMDPM)主动柔顺控制策略的主要内容——轨迹规划和控制方法进行了研究。首先,采用基于力反馈和滑动杆动力学模型的头部运动预测法进行轨迹规划,该方法利用并联机构(PM)分支杆长与运动平台位姿间的映射关系,通过力反馈信息和6-3UPS并联机构滑动杆动力学模型对头部运动进行预测,为头盔伺服系统的位置控制提供期望轨迹;然后,基于头盔伺服系统的动力学模型对系统的惯性项和非线性项进行了计算,设计了惯性项和非线性项补偿控制器,在进行头部运动跟踪的同时,实现了头盔显示器与头部间接触力的控制;最后,采用SimMechanics模块建立了HMDPM—人交互模型,并进行了相关验证实验。仿真结果表明,基于力反馈和滑动副滑动杆动力学模型的头部运动预测法能实时地、较为准确地预测出头部运动位置;基于动力学模型的惯性和非线性项补偿控制器不仅可以较为准确地跟踪头部运动,而且还能有效地减小头盔显示器与头部间的接触力,降低执行机构的刚度、减少系统摩擦力等非线性因素对使用者的干扰。

本文引用格式

李鹏 , 顾宏斌 , 吴东苏 , 刘晖 . 头盔伺服系统的主动柔顺控制[J]. 航空学报, 2012 , (5) : 928 -939 . DOI: CNKI:11-1929/V.20111011.1412.011

Abstract

In this paper, an active compliance control strategy and its key elements for helmet mounted display with parallel manipulator (HMDPM) is investigated. Firstly, the methodology of predicting head motion based on force feedback and a dynamic model of the extensible leg of a 6-3UPS parallel manipulator (PM) is proposed to plan the trajectory. Based on the relationship between the length of the extensible leg and the position and orientation of the platform, the information of head motion is predicted by means of sensor datum and solution of the dynamic model of the extensible leg, and then it is used as the desired trajectory of HMDPM position control. Secondly, the inertia term and nonlinear term of the HMDPM dynamic model are calculated, and the compensations of them are considered in the design of the HMDPM controller so that the contact force between head and helmet will be controlled easily while tracking control of the head is progressing. Finally, the SimMechanics module in MATLAB is adopted to construct a human-robot interactive model of HMDPM, and the feasibility of the novel control strategy is verified by developing some related numerical simulations. The simulations show that head motion will be predicted rapidly and precisely using the proposed method, and the stiffness of HMDPM and contact force are reduced evidently by compensating for the inertia term and the nonlinear term in the HMDPM controller while tracking control of the head is conducted, and user comfort is obviously enhanced.

参考文献

[1] Li P, Gu H B, Wu D S. Dimensional design and corresponding methodology for helmet mounted display with 6-DOF parallel manipulator based on requirements of head motion. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 739-750. (in Chinese) 李鹏, 顾宏斌, 吴东苏. 基于头部运动要求的六自由度头盔伺服系统尺寸优化设计及其方法. 航空学报, 2011, 32(4): 739-750.
[2] Lew J Y, Jou Y T, Pasic H. Interactive control of human/robot sharing same workspace//Intelligent robots and systems, Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tamatsu, Japan: Kagawa University, 2000: 535-540.
[3] Jou Y T. Human-robot interactive control. Ohio, USA, Ohio University, 2003.
[4] Wang J, Qin H L, Sheng T. Humanoid landing control on uneven terrain. Robot, 2010, 32(2): 210-218. (in Chinese) 王剑, 秦海力, 绳涛. 仿人机器人的不平整地面落脚控制方法. 机器人, 2010, 32(2): 210-218.
[5] Hu H Y. Research on semi-autonomous COLONOSCOPIC robot system. Harbin: Harbin Institute of Technology, 2010. (in Chinese) 胡海燕. 半主动式结肠内窥镜机器人系统研究. 哈尔滨: 哈尔滨工业大学,2010.
[6] Zhang L X, Wang L J. Research on gait training robot simulating the load bearing characteristics of elastic ground surface. Journal of Machine Design, 2009, 26(8): 38-40. (in Chinese) 张立勋, 王令军. 步态训练机器人模拟弹性地面承载特性研究. 机械设计, 2009, 26(8): 38-40.
[7] Chen F. Research on the wearable power assist robot. Hefei: University of Science and Technology of China, 2007. (in Chinese) 陈峰. 可穿戴型助力机器人技术研究. 合肥: 中国科学技术大学, 2007.
[8] Liu P, Zhang L X, Wang K Y, et al. Dynamic modeling and control of a wire-driven rehabilitation robot. Journal of Harbin Engineering University, 2009, 30(7): 811-815. (in Chinese) 刘攀, 张立勋, 王克义. 绳索牵引康复机器人的动力学建模与控制. 哈尔滨工程大学学报, 2009, 30(7): 811-815.
[9] Liu S, Xie Y L, Jiang S Y, et al. Interactive control for the arm rehabilitation robot//2009 International Workshop on Intelligent Systems and Applications. 2009: 1-4.
[10] Yang Y. Research on the arm rehabilitative robot system. Harbin: Harbin Engineering University, 2009. (in Chinese) 杨勇. 手臂康复机器人系统研究. 哈尔滨: 哈尔滨工程大学, 2009.
[11] Zhan J M. Research on condition cognition and compliant control of robot in free-form surfaces polishing. Changchun: Jilin University, 2002. (in Chinese) 詹建明. 机器人研磨自由曲面时的作业环境与柔顺控制研究. 长春: 吉林大学, 2002.
[12] Wang G L. Process planning technology of small polishing robot for large surface machining. Changchun: Jilin University, 2010. (in Chinese) 王桂莲. 微小研抛机器人加工大型曲面工艺规划技术. 长春: 吉林大学, 2010.
[13] Chen G L. Research on small robot for autonomous polishing large freeform surface. Changchun: Jilin University, 2009. (in Chinese) 陈贵亮. 研抛大型复杂曲面自主作业微小机器人研究. 长春: 吉林大学, 2009.
[14] Wei X Q. Research on force assisted assembly strategies for robotic remote welding in unstructured environment. Harbin: Harbin Institute of Technology, 2009. (in Chinese) 魏秀权. 机器人遥控焊接非结构化环境力觉辅助装配策略研究. 哈尔滨: 哈尔滨工业大学, 2009.
[15] Wei Y Y, Wei M, Lin S Q. Application of fuzzy control to robot compliance assembly. Journal of University of Science and Technology Beijing, 2003, 25(1): 74-78. (in Chinese) 魏媛媛, 魏敏, 林松青. 模糊控制在机器人柔顺装配中的应用. 北京科技大学学报, 2003, 25(1): 74-78.
[16] Xia Y C, Yin Y H, Huo H. Study on methodology of setting active compliance center for peg-in-hole assembly task. China Mechanical Engineering, 2004, 15(11): 1015-1021. (in Chinese) 夏妍春, 殷跃红, 霍华. 轴孔装配主动柔顺中心设置方法研究. 中国机械工程, 2004, 15(11): 1015-1021.
[17] Lan T. Research on synchronized control of multi-fingered anthropopathic dexterous robot hand. Harbin: Harbin Institute of Technology, 2010. (in Chinese) 兰天. 多指仿人机器人灵巧手的同步控制研究. 哈尔滨: 哈尔滨工业大学, 2010.
[18] Huang H. Research on a new bio-prosthetic hand and its dynamic control. Harbin: Harbin Institute of Technology, 2008. (in Chinese) 黄海. 新型仿人假手及其动态控制的研究. 哈尔滨: 哈尔滨工业大学, 2008.
[19] de Santis A. Modelling and control for human-robot interaction. Napoli: Universit`a degli Studi di Napoli Federico II, 2007.
[20] Zhang J F. Exoskeleton based on man machine intelligent system and its application. Hangzhou: Zhejiang University, 2009. (in Chinese) 张佳帆. 基于柔性外骨骼人机智能系统基础理论及应用技术研究. 杭州: 浙江大学, 2009.
[21] Wang X L. Study on the robotic compliance control and visual simulation in uncertain environment. Jinan: Shandong University, 2006. (in Chinese) 王宪伦. 不确定环境下机器人柔顺控制及可视化仿真的研究. 济南: 山东大学, 2006.
[22] Ma D W, Fan G. Predictive algorithm and simulation of head motion in VR system based on IMM. Journal of System Simulation, 2009, 21(24): 7817-7820. (in Chinese) 马登武, 范庚. 基于交互式多模型的VR系统头部运动预测算法与仿真.系统仿真学报, 2009, 21(24): 7817-7820.
[23] Ma D W, Ye W, Lu X F, et al. Study on head moving and tracking in virtual reality system. Electronics Optics & Control, 2007, 14(1): 55-60. (in Chinese) 马登武, 叶文, 吕晓锋, 等. 虚拟现实系统中人的头部运动与跟踪研究. 光电与控制, 2007, 14(1): 55-60.
[24] Ma D W, Sun L H, Tong M A. Visual delay of virtual reality system and its reducing algorithm. Fire Control & Command Control, 2004, 29(2): 50-52. (in Chinese) 马登武, 孙隆和, 佟明安. 虚拟现实系统的视觉延迟及其克服算法. 火力与指挥控制, 2004, 29(2): 50-52.
[25] 顾宏斌, 吴东苏, 高振兴, 等. 基于人体表面肌电信息的头盔显示器虚拟视觉时延补偿系统及方法: 中国, CN101727182A. 2010-06-09.
[26] 顾宏斌, 高振兴, 吴东苏. 基于多加速度传感器的虚拟现实头盔防眩晕系统及方法: 中国, CN101034309. 2007-09-12.
[27] Qi P G, Wang H, Han J W. Inertia compensation of hydraulic control loading system. Hydraulics Pneumatics & Seals, 2010(8): 37-41. (in Chinese) 齐潘国, 王慧, 韩俊伟. 液压操纵负荷系统惯性补偿方法研究. 液压气动与密封, 2010(8): 37-41.
[28] Qi P G. Force-feel cueing study of hydraulic control loading system of flight simulator. Harbin: Harbin Institute of Technology, 2009. (in Chinese) 齐潘国. 飞行模拟器液压操纵负荷系统力感模拟方法研究. 哈尔滨: 哈尔滨工业大学, 2009.
[29] Jou Y T. Human-robot Interactive control. Ohio: Ohio University, 2003.
[30] Gabriel A O, Colgate E J, Peshkin M A. A 1-DOF assistive exoskeleton with inertia compensation: effects on the agility of leg swing motion. Journal of Engineering Medicine, 2011, 225(3): 228-245.
[31] Ma X, Yang Z Y, Wang P F, et al. Dynamics modeling and computed moment control of high speed parallel manipulator. Journal of Machine Design, 2006, 23(2): 13-15.
[32] Yang J H. Research on ship motion simulator with three degree of freedom and its hydraulic servo driven system. Changsha: National University of Defense Technology, 2007.
[33] Yang C F, Huang Q T, Jiang H Z, et al. PD control with gravity compensation for hydraulic 6-DOF parallel manipulator. Mechanism and Machine Theory, 2010, 45: 666-677.
[34] Shang W W, Cong S, Zhang Y X. Nonlinear friction compensation of a 2-DOF planar parallel manipulator. Mechatronics, 2008, 18(7): 340-346.
[35] Wu D S. Advanced control technology research of light flight simulator motion platform. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) 吴东苏. 轻型飞行模拟器运动平台先进控制技术研究. 南京: 南京航空航天大学, 2007.
[36] Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mechanism and Machine Theory, 1998, 33(8): 1135-1152.
[37] Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach. Mechanism and Machine Theory, 1998, 33(7): 993-1012.
文章导航

/