电子与自动控制

基于Census变换和改进自适应窗口的立体匹配算法

  • 周龙 ,
  • 徐贵力 ,
  • 李开宇 ,
  • 王彪 ,
  • 田裕鹏 ,
  • 陈欣
展开
  • 南京航空航天大学 自动化学院, 江苏 南京 210016

收稿日期: 2011-08-07

  修回日期: 2011-11-17

  网络出版日期: 2012-05-24

基金资助

国家自然科学基金(60974105);航空科学基金(20100152003);江苏高校优势学科建设工程资助项目

Stereo Matching Algorithm Based on Census Transform and Modified Adaptive Windows

  • ZHOU Long ,
  • XU Guili ,
  • LI Kaiyu ,
  • WANG Biao ,
  • TIAN Yupeng ,
  • CHEN Xin
Expand
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2011-08-07

  Revised date: 2011-11-17

  Online published: 2012-05-24

Supported by

National Natural Science Foundation of China (60974105);Aeronautical Science Foundation of China (20100152003); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

摘要

针对现有立体匹配算法难以在幅度失真图像中获取高匹配精度的问题,提出了一种基于Census变换和改进自适应窗口的立体匹配算法。首先根据图像结构和色彩信息获得基于十字骨架的任意形状和大小的Census变换窗口;其次利用Census变换的Hamming距作为匹配代价,使用两次累加降低计算复杂度,采用局部优化得到初始视差;最后提出一种基于均值偏移的视差提精方法,有效地处理了不可信视差区域,获得高精度的视差图。实验表明,通过该算法获得的视差图与当前优秀的局部算法相比精度相当,特别是能很好地处理现有算法难以解决的幅度失真问题,适用于无人机视觉导航的应用。

本文引用格式

周龙 , 徐贵力 , 李开宇 , 王彪 , 田裕鹏 , 陈欣 . 基于Census变换和改进自适应窗口的立体匹配算法[J]. 航空学报, 2012 , (5) : 886 -892 . DOI: CNKI:11-1929/V.20111231.1406.003

Abstract

In view of the fact that it is difficult for existing stereo matching algorithms to obtain high matching accuracy from images with radiometric differences, this paper proposes a novel algorithm based on Census transform and modified adaptive windows. First, according to the image structure and color information, an arbitrary shaped adaptive window based on the cross skeleton is constructed. Then, a matching cost based on Hamming distance is determined by Census transform. A two-step accumulation is used to reduce the computation complexity. The matching cost is subsequently optimized by winner-takes-all to gain initial disparity. Finally, A novel disparity refinement method based on mean-shift is proposed which is able to deal with the unreliable initial estimates and obtain a highly accurate disparity map. Experiments demonstrate that, compared with the state-of-art local algorithms, the proposed algorithm produces comparable accuracy: in particular, it can handle radiometric differences which are not solved by the state-of-art algorithms. Therefore the algorithm can be applied to environments of UAV vision navigation.

参考文献

[1] Hrabar S. 3D path planning and stereo based obstacle avoidance for rotorcraft UAVs. International Conference on Intelligent Robots and Systems. 2008: 807-814.
[2] Salazar S, Romero H, Gomez J. Real-time stereo visual serving control of an UAV having eight-rotors. International Conference on Electrical Engineering, Computing Science and Automation Control. 2009: 115-125.
[3] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 2002, 47(1): 7-42.
[4] Scharstein D, Szeliski R. The middlebury stereo vision page.. http://vision.middlebury.edu/stereo/.
[5] Fusiello A, Roberto V. Efficient stereo with multiple windowing. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1997: 858-863.
[6] Veksler O. Fast variable window for stereo correspondence using integral image. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2003: 556-561.
[7] Zhang K. Cross-based local stereo matching using orthogonal integral images. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(7): 1073-1079.
[8] Hirschmulle H, Scharstein D. Evaluation of cost functions for stereo matching. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2007.
[9] Hirschmulle H, Scharstein D. Evaluation of stereo matching costs on images with radiometric differences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1582-1599.
[10] Yoon K, Kweon S. Locally adaptive support weight approach for visual correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 924-931.
[11] Tombari F, Mattoccia S. Segmentation based adaptive support for accurate stereo correspondence. IEEE Pacific Rim Symposium on Video and Technology. 2007: 427-438.
[12] Zabih R, Woodfill J. Non-parametric local transforms for computing visual correspondence. European Conference on Computer Vision. 1994: 151-158.
[13] Comanici D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
[14] Larsen E S, Mordohai P. Temporally consistent reconstruction from multiple video streams using enhanced belief propagation. IEEE 11th International Conference on Computer Vision. 2007.
[15] Yu T,Lin R S. Efficient message representations for belief propagation. IEEE 11th International Conference on Computer Vision. 2007.
文章导航

/