电子与控制

基于启发式自适应离散差分进化算法的多UCAV协同干扰空战决策

  • 薛羽 ,
  • 庄毅 ,
  • 张友益 ,
  • 倪思如 ,
  • 赵学健
展开
  • 1. 南京航空航天大学 计算机科学与技术学院, 江苏 南京 210016;
    2. 中船重工集团公司 第723研究所, 江苏 扬州 225001;
    3. 南京邮电大学 物联网学院, 江苏 南京 210046
薛羽,男,博士研究生。主要研究方向:智能计算、电子对抗、物联网。Tel:025-84890790,E-mail:xueyu_123@nuaa.edu.cn;庄毅,女,教授,博士生导师。主要研究方向:分布计算。Tel:025-84896779,E-mail:zhuangyi@nuaa.edu.cn

收稿日期: 2012-02-22

  修回日期: 2012-04-16

  网络出版日期: 2012-05-17

基金资助

江苏省普通高校研究生科研创新计划(CXLX11_0203);航空科学基金(2010ZC13012);国防基础研究基金(Q072006C002-1)

Multiple UCAV Cooperative Jamming Air Combat Decision Making Based on Heuristic Self-adaptive Discrete Differential Evolution Algorithm

  • XUE Yu ,
  • ZHUANG Yi ,
  • ZHANG Youyi ,
  • NI Siru ,
  • ZHAO Xuejian
Expand
  • 1. School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. No.723 Institute, China Shipbuilding Industry Corporation, Yangzhou 225001, China;
    3. College of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210046, China

Received date: 2012-02-22

  Revised date: 2012-04-16

  Online published: 2012-05-17

Supported by

Funding of Jiangsu Innovation Program for Graduate Education (CXLX11_0203); Aeronautical Science Foundation of China (2010ZC13012); National Defense Foundation of China (Q072006C002-1)

摘要

研究了多无人作战飞机(UCAV)协同干扰空战决策(MUCJAD)问题,在干扰效能评估指标量化方法的基础上为该问题建立了优化模型。为有效求解该模型,提出一种启发式自适应离散差分进化(H-SDDE)算法。在H-SDDE算法中,设计了包含4种候选解产生策略的候选策略池,引入了候选解产生策略及其参数的自适应学习过程。此外,结合实际问题为算法设计了基于威胁度的扩展型整数编码方案、基于威胁度的启发式个体调整操作、基于约束满足的个体修复操作。在12个测试实例上进行了仿真验证,结果表明,H-SDDE算法与其他同类算法相比在求解质量和求解速度上具有明显优势,能够更好地发挥多UCAV协同干扰整体效果。

本文引用格式

薛羽 , 庄毅 , 张友益 , 倪思如 , 赵学健 . 基于启发式自适应离散差分进化算法的多UCAV协同干扰空战决策[J]. 航空学报, 2013 , 34(2) : 343 -351 . DOI: 10.7527/S1000-6893.2013.0039

Abstract

This paper presents a multiple unmanned combat air vehicle (UCAV) cooperative jamming air combat decision-making (MUCJAD) problem. An optimal model is constructed for the MUCJAD on the metric methods of the jamming effect evaluating indexes. In order to solve the model effectively, a heuristic self-adaptive discrete differential evolution (H-SDDE) algorithm is proposed in which, a strategy candidate pool which including four candidate solution generating strategies is designed and two self-adaptive learning processes are introduced for candidate solution generating strategy and its parameters. Furthermore, a threat degree based extensional integer coding scheme, a heuristic individual adjust operator and a constraints satisfaction based individual repair process are designed according to the real-word application. Simulation experiments are conducted on twelve test instances. The results indicate that the H-SDDE algorithm is better than other algorithms in terms of convergence speed and solution quality. The H-SDDE algorithm can enhance the effect of multiple UCAV cooperative jamming.

参考文献

[1] Duan H B, Ding Q X, Chang J J, et al. Multi-UCAVs task assignment simulation platform based on parallel ant colony optimization. Acta Aeronautica et Astronautica Sinica, 2008, 29(S1): 192-197. (in Chinese) 段海滨, 丁全心, 常俊杰, 等. 基于并行蚁群优化的多UCAV任务分配仿真平台. 航空学报, 2008, 29(S1): 192-197.
[2] Lloyd S P, Witsenhausen H S. Weapons allocation is NP-complete. Proceeding of the Summer Conference on Simulation, 1986.
[3] Tian J, Shen L C. Research on multi-base multi-UAV cooperative reconnaissance problem. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 913-921. (in Chinese) 田菁, 沈林成. 多基地多无人机协同侦察问题研究. 航空学报, 2007, 28(4): 913-921.
[4] Li Y, Dong Y N. Weapon-target assignment based on simulated annealing and discrete particle swarm optimization in cooperative air combat. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 626-631. (in Chinese) 李俨, 董玉娜. 基于SA-DPSO混合优化算法的协同空战火力分配. 航空学报, 2010, 31(3): 626-631.
[5] Luo D L, Duan H B, Wu S X, et al. Research on air combat decision-making for cooperative multiple target attack using heuristic ant colony algorithm. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1166-1170. (in Chinese) 罗德林, 段海滨, 吴顺详, 等. 基于启发式蚁群算法的协同多目标攻击空战决策研究. 航空学报, 2006, 27(6): 1166-1170.
[6] Huang J, Shan H, Man Y. Coordinated jamming task assignment model and algorithm based on region covering. Acta Armamentarii, 2011, 32(6): 725-732. (in Chinese) 黄郡, 单洪, 满毅. 基于区域覆盖的协同干扰任务分配模型及算法. 兵工学报, 2011, 32(6): 725-732.
[7] Saaty T L. The seven pillars of the analytic hierarchy process. Multiple Criteria Decision Making in the New Millennium, 2001, 507(9): 15-37.
[8] Chang Y X, Gao Z H. Application of adaptive differential evolutionary algorithms to aerodynamic optimization design. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1590-1596. (in Chinese) 常彦鑫, 高正红. 自适应差分进化算法在气动优化设计中的应用. 航空学报, 2009, 30(9): 1590-1596.
[9] Pan Q K, Wang L, Gao L, et al. An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers. Information Sciences, 2011, 181(3): 668-685.
[10] Wang L, Pan Q K, Suganthan P N, et al. A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems. Computers & Operations Research, 2010, 37(3): 509-520.
[11] Pan Q K, Tasgetiren M F, Liang Y C. A discrete differential evolution algorithm for the permutation flowshop scheduling problem. Computers & Industrial Engineering, 2008, 55(4): 795-816.
[12] Fogel D B. An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks, 1994, 5(1): 3-14.
[13] Tasgetiren M F, Pan Q K, Liang Y C. et al. A discrete differential evolution algorithm for the total earliness and tardiness penalties with a common due date on a single-machine. Proceeding of the IEEE Symposium on Computational Intelligence in Scheduling, 2007.
[14] Pan Q K, Tasgetiren M F, Liang Y C. Minimizing total earliness and tardiness penalties with a common due date on a single-machine using a discrete particle swarm optimization algorithm. Ant Colony Optimization and Swarm Intelligence, 2006, 4150(24): 460-467.
[15] Xue Y, Zhuang Y, Ni T Q, et al. One improved genetic algorithm applied in the problem of dynamic jamming resource scheduling with multi-objective and multi-constraint. Proceeding of the IEEE Fifth International Conference on Bio-inspored Computing: Theories and Applications, 2010.
[16] Zhai X F, Zhuang Y. IIGA based algorithm for cooperative jamming resource allocation. Proceedings of the Asia Pacific Conference on Postgraduate Research, 2009.
文章导航

/