半球谐振陀螺仪谐振子品质因数不均匀引起的误差分析
收稿日期: 2012-01-16
修回日期: 2012-03-19
网络出版日期: 2013-01-19
基金资助
十一·五预研项目(51309050601)
Analysis for Impact of Resonator’s Q-factor Nonuniformity on the Error of Hemispherical Resonator Gyro
Received date: 2012-01-16
Revised date: 2012-03-19
Online published: 2013-01-19
Supported by
National Defense Advanced Research Project (51309050601)
半球谐振子的品质因数不均匀性是造成陀螺仪输出误差的一个主要误差源,所以研究在参数激励以及位置激励两种模式下,谐振子品质因数不均匀对于陀螺仪输出误差的影响具有一定的理论意义。在引入半球谐振子的环形振动模型的基础上,首先考虑参数激励方式下,品质因数不均匀引起的进动角速率误差的表达式,仿真分析了不均匀性四次谐波对陀螺仪漂移角度的贡献,结果表明漂移角度为具有趋势项的振动曲线。然后在位置激励方式下,通过开环和闭环两种模式分别研究了品质因数不均匀的四次谐波对于输入角速率解算的影响,得出了当位置激励对准固有韧性轴时,解算的误差能够得到抑制的结论。总之,在两种激励方式下,品质因数的四次谐波分量都会导致陀螺仪出现输出误差。
李巍 , 任顺清 , 王常虹 . 半球谐振陀螺仪谐振子品质因数不均匀引起的误差分析[J]. 航空学报, 2013 , 34(1) : 121 -129 . DOI: 10.7527/S1000-6893.2013.0015
A resonator’s Q-factor nonuniformity is one of the main error sources of a hemispherical resonator gyro (HRG). Therefore, it is of theoretical importance to study the influence of Q-factor nonuniformity about the circumferential angle on the output angular rate error under both positional and the parametric exciting modes. Based on the introduction of a ring-shaped dynamic equation of hemispherical resonator, the expression for a gyro’s precession error is derived, and the influence of Q-factor nonuniformity on drift angle is computed through simulation calculation. The drift angle curve is found to be an oscillating curve with a ramp trend term under the parametric exciting mode. The influence of Q-factor nonuniformity on the solution error of input angular rate is also computed through simulation under both the open-loop mode and the closed-loop mode. It is proved that the solution error will be restrained when the excitation electrode aligns with the resonator’s inherent toughness axis under the positional exciting mode. In summary, the 4th harmonic component of resonator’s Q-factor nonuniformity will bring about output errors under whatever exciting modes.
[1] Lü Z Q. Signal proceesing technique for hemispherical resonant gyro (HRG). Journal of Chinese Inertial Technology, 2000, 8(3): 58-61. (in Chinese) 吕志清. 半球谐振陀螺(HRG)信号处理技术. 中国惯性技术学报, 2000, 8(3): 58-61.
[2] Zhbanov Y K. Self-tuning contour of quadrature suppression in a hemispherical resonator gyroscope. Giroskop. Navigation, 2007(2): 37-42.
[3] Zhbanov Y K, Zhuravlev V P. Effect of movability of the resonator center on the operation of a hemispherical resonator gyro. Mechanics of Solids, 2007, 42(6): 851- 859.
[4] Lynch D D. HRG development at Delco, Litton, and Northrop Grumman. Proceedings of Anniversary Workshop on Solid-State Gyroscopy, 2008: 19-21.
[5] Fan S C. Study on vibrating gyro. Beijing: Beihang University, 1990. (in Chinese) 樊尚春. 谐振陀螺的研究. 北京:北京航空航天大学, 1990.
[6] Матвеев В А,Липатников В И, Алехин А В, et al. Vibration gyro. Yang Y F, Zhao H, translated. Beijing: National Defense Industry Press, 2009: 6-36.(in Chinese) В. А. 马特维耶夫, В. И. 利帕特尼科夫, А. В. 阿廖欣, 等. 固体波动陀螺(译文集). 杨亚非, 赵辉, 译. 北京: 国防工业出版社, 2009: 6-36.
[7] Gao S L. Analysis and design of hemispherical resonator gyro. Harbin: Harbin Engineering Universty, 2008. (in Chinese) 高胜利. 半球谐振陀螺的分析与设计. 哈尔滨: 哈尔滨工程大学, 2008.
[8] Fan S C, Liu G Y, Wang Z J. Study on the precession of vibrating shape for flawed cylindrical shell. Acta Aeronautica et Astronautica Sinica, 1992, 13(10): 528-532. (in Chinese) 樊尚春, 刘广玉, 王振均. 有缺陷圆柱壳振型进动的研究. 航空学报, 1992, 13(10): 528-532.
[9] Ren S Q, Zhao H B. Influence of density error of hemispherical resonator on output accuracy of gyro. Journal of Chinese Inertial Technology, 2011, 19(3): 364-368. (in Chinese) 任顺清, 赵洪波. 半球振子密度分布不均匀对输出精度的影响. 中国惯性技术学报, 2011, 19(3): 364-368.
[10] Shatalov M Y, Joubert S V, Coetzee C E. The influence of mass imperfections on the evolution of standing waves in slowly rotating spherical bodies. Journal of Sound and Vibration, 2009, 330(1): 127-135.
[11] Zhbanov Y K. Amplitude control contour in a hemispherical resonator gyro with automatic compensation for difference in Q-factors. Mechanics of Solids, 2008, 43(3): 328-332.
[12] Shatalov M, Coetzee C. Dynamics of rotating and vibrating thin hemispherical shell with mass and damping imperfections and parametrically driven by discrete electrodes. Gyroscopy and Navigation, 2011, 2(1): 27-33.
[13] Lynch D D. Vibratory gyro analysis by the method of averaging. The 2nd Saint Petersburg International Conference on Gyroscopic Technology and Navigation, 1995: 26-34.
[14] Gao S L, Wu J T, Zhang F Y. Signal detection of hemispherical resonator gyro based on force rebalance. Ship Engineering, 2006, 28(2): 17-19. (in Chinese) 高胜利, 吴简彤, 张福勇. 力平衡半球谐振陀螺的信号检测. 船舶工程, 2006, 28(2): 17-19.
[15] Ren S Q, Li W, Zhao H B. The influence of alignment errors on the output accuracy of hemispherical resonator gyro. Journal of Vibration, Measurement & Diagnosis, 2011, 31(4): 420-423. (in Chinese) 任顺清, 李巍, 赵洪波. 对准误差对半球谐振陀螺仪输出精度的影响. 振动、测试与诊断, 2011, 31(4): 420-423.
/
〈 | 〉 |