流体力学、飞行力学与发动机

考虑发动机冷却通道固壁内耦合导热影响的低温甲烷超临界压力传热研究

  • 陈尊敬 ,
  • 王雷雷 ,
  • 孟华
展开
  • 浙江大学 航空航天学院, 浙江 杭州 310027
陈尊敬,男,硕士研究生。主要研究方向:超临界压力传热。,E-mail:20924041@zju.edu.cn;王雷雷,男,硕士研究生。主要研究方向:超临界压力传热。,E-mail:wangleilei2100@zju.edu.cn;孟华,男,博士,教授,博士生导师。主要研究方向:推进与动力技术。Tel:0571-87952990,E-mail:menghua@zju.edu.cn

收稿日期: 2012-01-21

  修回日期: 2012-02-26

  网络出版日期: 2013-01-19

基金资助

浙江省自然科学基金(R1100300)

Study of Heat Transfer of Cryogenic Methane Under Supercritical Pressure with Consideration of Thermal Conduction in Engine Cooling Channel Walls

  • CHEN Zunjing ,
  • WANG Leilei ,
  • MENG Hua
Expand
  • School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

Received date: 2012-01-21

  Revised date: 2012-02-26

  Online published: 2013-01-19

Supported by

Zhejiang Provincial Natural Science Foundation (R1100300)

摘要

在考虑发动机冷却通道固壁内耦合导热影响的情况下,开展了低温甲烷在矩形冷却通道中的超临界压力湍流换热数值模拟研究;仔细分析了热流密度及管道几何形状对低温甲烷超临界压力下的流动和传热的影响;得到了流体速度、壁面温度、壁面热流密度等参数的详细变化情况以及Nusselt数的变化规律。计算结果表明:在考虑流固耦合作用时,上壁面施加的热流有一部分会通过固体壁面内的热传导,经由侧壁面传入超临界压力流体,并且随着热流密度的增加,经侧壁面传导的热流所占的比例也会随之增大;减小冷却通道内截面的高宽比,可以提高超临界压力下的换热效果,但流动压降会大大增加,因此冷却通道高宽比的选择需综合考虑传热与压力损失的影响,可以引入热性能参数作为参考;修正的Jackson&Hall对流换热关系式基本可以适用于本文中的各种工况。

本文引用格式

陈尊敬 , 王雷雷 , 孟华 . 考虑发动机冷却通道固壁内耦合导热影响的低温甲烷超临界压力传热研究[J]. 航空学报, 2013 , 34(1) : 8 -18 . DOI: 10.7527/S1000-6893.2013.0002

Abstract

Numerical simulation study is conducted of the heat transfer of cryogenic methane flowing inside a rectangular engine cooling channel under supercritical pressure with consideration of the coupled thermal conduction in the solid channel region. The effects of wall heat fluxes and cooling channel geometries on the fluid flow and heat transfer processes under supercritical pressure are carefully examined. Variations of the fluid velocity, channel wall temperature, wall heat flux, and Nusselt number are obtained and discussed. Results indicate that with consideration of the conjugate heat transfer in both the solid and fluid regions, a fraction of the heat flux imposed on the top channel surface is transferred into the cryogenic methane through the side walls. As the imposed wall heat flux increases, more heat can be thermally conducted into the side channel walls. Decreasing the cooling channel height/width aspect ratio leads to enhanced heat transfer, but the pressure loss also increases significantly. Therefore, the combined effects of the channel aspect ratio on both heat transfer and pressure loss has to be taken into consideration to obtain an optimum cooling channel design. The thermal performance parameter can be used as a reference in this regard. The modified Jackson & Hall coefficient is applicable to heat transfer prediction under supercritical pressure with acceptable accuracy under all tested conditions in this paper.

参考文献

[1] Liao S M, Zhao T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes. International Journal of Heat and Mass Transfer, 2002, 45(25): 5025-5034.

[2] He S, Jiang P X, Xu Y J, et al. A computational study of convection heat transfer to CO2 at supercritical pressures in a vertical mini tube. International Journal of Thermal Sciences, 2005, 44(6): 521-530.

[3] Shi R F, Jiang P X, Zhang Y. Experimantal investigations of convection heat transfer of CO2 at supercritical pressure in small tubes. Journal of Engineering Thermophysics, 2007, 28(6): 995-997. (in Chinese) 石润富, 姜培学, 张宇. 细圆管内超临界二氧化碳对流换热的实验研究. 工程热物理学报, 2007, 28(6): 995-997.

[4] Li Z H, Jiang P X. Correlations of CO2 at supercritical pressures in a vertical circular tube. Nuclear Power Engineering, 2010, 31(5): 72-75. (in Chinese) 李志辉, 姜培学. 超临界压力CO2在垂直管内对流换热准则关联式. 核动力工程, 2010, 31(5): 72-75.

[5] Lee S H. Numerical study of convective heat transfer to supercritical water in rectangular ducts. International Communication in Heat and Mass Transfer, 2010, 37(10): 1465-1470.

[6] Hu Z H, Chen T K, Luo Y S, et al. Heat transfer characteristics of kerosene at supercritical pressure. Journal of Xi’an Jiaotong University, 1999, 33(9): 62-70. (in Chinese) 胡志宏, 陈听宽, 罗毓珊, 等. 超临界压力下煤油传热特性试验研究. 西安交通大学学报, 1999, 33(9): 62-70.

[7] Hu Z H, Chen T K, Luo Y S, et al. Heat transfer to kerosene at supercritical pressure in small-diameter tube with large heat flux. Journal of Chemical Industry and Engineering, 2002, 53(2): 134-138. (in Chinese) 胡志宏, 陈听宽, 罗毓珊, 等. 高热流条件下超临界压力煤油流过小直径管的传热特性.化工学报, 2002, 53(2): 134-138.

[8] Hou L Y, Wang H, Zhong B J, et al. Numerical study on heat transfer characteristics of emulsified kerosene at supercritical pressure. Journal of Propulsion Technology, 2006, 27(6): 488-491. (in Chinese) 侯凌云, 王慧, 钟北京, 等. 超临界压力下乳化煤油传热性能数值研究. 推进技术, 2006, 27(6): 488-491.

[9] Zhong F Q, Fan X J, Yu G, et al. Heat transfer of aviation kerosene at supercritical conditions. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550.

[10] Li X F, Zhong F Q, Fan X J, et al. Numerical study of convective heat transfer of aviation kerosene flows in pipe at supercritical pressur. Journal of Propulsion Technology, 2010, 31(4): 467-472. (in Chinese) 李勋锋, 仲峰泉, 范学军, 等. 超临界压力下航空煤油圆管流动和传热的数值研究. 推进技术, 2010, 31(4): 467-472.

[11] Hua Y X, Wang Y Z, Meng H. Numerical study on turbulent convective heat transfer with n-heptane under supercritical pressures. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1324-1330. (in Chinese) 华益新, 王亚洲, 孟华. 超临界压力下正庚烷的湍流传热数值研究. 航空学报, 2010, 31(7): 1324-1330.

[12] Wang Y Z, Hua Y X, Meng H. Numerical investigation of turbulent heat transfer of cryogenic propellant methane under supercritical pressure. Journal of Propulsion Technology, 2010, 31(5): 606-611. (in Chinese) 王亚洲, 华益新, 孟华. 超临界压力下低温甲烷的湍流传热数值研究. 推进技术, 2010, 31(5): 606-611.

[13] Pizzarelli M, Urbano A, Nasuti F. Numerical analysis of deterioration in heat transfer to near-critical rocket propellants. Numerical Heat Transfer, Part A: Application, 2010, 57(5): 297-314.

[14] Ruan B, Meng H. Three-dimensional numerical study of supercritical pressure effect on heat transfer of cryogenic methane. Journal of Aerospace Power, 2011, 26(7): 1480-1487.(in Chinese) 阮波, 孟华. 超临界压力对低温甲烷传热影响的三维数值模拟研究. 航空动力学报, 2011, 26(7): 1480-1487.

[15] Ely J F, Hanley H J M. Prediction of transport properties. 1. Viscosity of fluids and mixtures. Industrial and Engineering Chemistry Fundamentals, 1981, 20(4): 323-332.

[16] Meng H, Yang V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme. Journal of Computational Physics, 2003, 189(1): 277-304.

[17] Ruan B, Meng H. Numerical model development and validation for hydrocarbon fuel supercritical heat transfer with endothermic pyrolysis. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2220-2226. (in Chinese) 阮波, 孟华. 碳氢燃料裂解吸热反应及超临界传热现象数值模型的构建与验证. 航空学报, 2011, 32(12): 2220-2226.

[18] Incropera F P, Dewitt D P, Bergman T L, et al. Foundamentals of heat and mass transfer. Ge X S, Ye H, translated. 6th ed. Beijing: Chemical Industry Press, 2007: 318-319. (in Chinese) Incropera F P, Dewitt D P, Bergman T L, 等. 传热和传质基本原理. 葛新石, 叶宏, 译. 6版. 北京: 化学工业出版社, 2007: 318-319.

[19] Alkhamis N Y, Rallabandi A P, Han J C. Heat transfer and pressure drop correlations for square channels with V-shaped ribs at high Reynolds numbers. Journal of Heat Transfer, 2011, 133(11): 111901.

文章导航

/