流体力学、飞行力学与发动机

多变量气动设计问题分层协同优化

  • 李焦赞 ,
  • 高正红
展开
  • 西北工业大学 翼型叶栅空气动力学国家重点实验室, 陕西 西安 710072
李焦赞,男,博士研究生。主要研究方向:飞行器气动优化设计。Tel:029-88495971,E-mail:jiaozanli@163.com;高正红,女,博士,教授,博士生导师。主要研究方向:飞行器设计、流体力学、飞行力学与飞行控制等。Tel:029-88495971,E-mail:zgao@nwpu.edu.cn

收稿日期: 2012-01-04

  修回日期: 2012-02-13

  网络出版日期: 2013-01-19

Multivariable Aerodynamic Design Based on Multilevel Collaborative Optimization

  • LI Jiaozan ,
  • GAO Zhenghong
Expand
  • National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2012-01-04

  Revised date: 2012-02-13

  Online published: 2013-01-19

摘要

通过验证实例分析,气动设计中精细化优化模型对设计结果收敛精度的提高有很大帮助,但同时也带来优化算法搜索困难的问题,并且由于不同类型设计变量之间的相互耦合干扰使优化难以收敛到全局最优解。于是提出基于响应均值灵敏度的概念对大规模的设计变量进行重要性分组的策略,依据设计变量分组情况应用系统分解思想对多变量设计问题进行分层协同优化来降低系统的复杂度,这既保证了精细化设计的要求,又缓解了优化算法对大规模问题搜索困难的问题。与传统气动优化方法相比,基于系统分解的分层协同优化算例有较大寻优效率和性能提升,证明了该方法的可行性。

本文引用格式

李焦赞 , 高正红 . 多变量气动设计问题分层协同优化[J]. 航空学报, 2013 , 34(1) : 58 -65 . DOI: 10.7527/S1000-6893.2013.0008

Abstract

In future aircraft design, the desired performance indexes are not only more rigorous, but also more numerous. Therefore, aerodynamic design should achieve high definition shape design and satisfy the multiple design requirements. It is consequently necessary to establish a multivariable optimization model in aerodynamic design. In this paper, a test example is provided to show the advantage and disadvantage of the multivariable model in aerodynamic optimization. While the optimized results are significantly heightened, searching difficulty also increases for the optimization algorithm. Meanwhile, because of the coupling disturbance among different design parameters, it is difficult to achieve global optimized results. So in this paper a sampling mean-response sensitivity analysis is carried out to measure the importance of design parameters, which are then grouped based on their importance level. Subsequently the multilevel collaborative optimization design method based on system decomposition is used to reduce the system complicacy. It ensures the precision of the multivariable optimization model and resolves the searching difficulty of the optimization algorithm. An example for a wing-body optimization is carried out using the above method and the result shows its feasibility and advantage as compared with the traditional aerodynamic optimization method.

参考文献

[1] Wu G H, Chen Y C. The application and development of CFD in large civil aircraft. Shanghai: Shanghai Jiaotong University Press, 2009: 10-20. (in Chinese) 吴光辉, 陈迎春. 大型客机计算流体力学应用与发展. 上海: 上海交通大学出版社, 2009: 10-20.
[2] Su W, Zuo Y T, Gao Z H. Preliminary aerodynamic shape optimization using genetic algorithm and neural network. AIAA-2006-7106, 2006.
[3] Gao Z H. The research progress in aerodynamic shape optimization methods. The Proceeding of Chinese Institute of Aeronautics 2007 Annual Conference, 2007. (in Chinese) 高正红. 气动外形优化设计方法研究与存在问题. 中国航空学会2007年学术年会, 2007.
[4] Leoviriyakit K, Kim S, Jameson A. Viscous aerodynamic shape optimization of wings including planform variables. AIAA-2003-3498, 2003.
[5] Leoviriyakit K, Jameson A. Multi-point wing planform optimization via control theory. AIAA-2005-450, 2005.
[6] Li P F, Zhang B Q, Chen Y C. A two-step optimization method of transonic wing design for engineering application. Acta Aeronautica et Astronautica Sinica, 2011, 32(12): 2153-2162. (in Chinese) 李沛峰, 张彬乾, 陈迎春. 基于工程的跨声速机翼两步优化设计方法. 航空学报, 2011, 32(12): 2153-2162.
[7] Chang Y X, Gao Z H. Applicability analysis of genetic algorithms using in aerodynamic optimization. Acta Aerodynamica Sinica, 2009, 27(2): 167-172. (in Chinese) 常彦鑫, 高正红. 遗传算法在气动优化问题中的适应性分析. 空气动力学学报, 2009, 27(2): 167-172.
[8] Xia L, Gao Z H, Li T. System decomposition method based on pareto and the application to the optimization of the aircraft configuration design. ICAS 2004-1.4.5, 2004.
[9] Mohanty S, Wu Y T. Mean-based sensitivity or uncertainty importance measures for identifying influential parameter. Proceedings of the 6th Probabilistic and Safety Assessment Methods (PSAM) Conference, 2002.
[10] Hong B, Soh T Y, Pey L P. Development of a helicopter blade FE model using MIGA optimization. AIAA Journal, 2004, 42(4): 1-8.
[11] Wang M L, Gao Z H, Xia L. Influence of aerodynamic and stealth performance computation precision on aircraft optimization design. Flight Dynamics, 2009, 27(6): 14-17. (in Chinese) 王明亮, 高正红, 夏露. 气动与隐身性能计算精度对飞行器设计的影响. 飞行力学, 2009, 27(6): 14-17.
[12] Osher S, Hafes M, Whitlow W. Entropy comdition satisfying approximations for the full potential equation of transonic flow. Mathem of Computation, 1985, 44(169): 1-29.
[13] Wang J J, Gao Z H. Analysis and improvement of Hicks-Henne airfoil parametric method. Aeronautical Computing Technique, 2010, 40(4):46-49. (in Chinese) 王建军, 高正红. Hicks-Henne翼型参数化方法分析及改进. 航空计算技术, 2010, 40(4): 46-49.
[14] Hicks R M, Henne P A. Wing design by numerical optimization. Journal of Aircraft, 1978, 15(7): 407-412.
[15] Wu Y T, Mohanty S. Variable screening and ranking using sampling-based sensitivity measures. Reliability Engineering and System Safety, 2006, 91(6): 634-647.
[16] Sitakanta M, Wu Y T. CDF sensitivity analysis technique for ranking influential parameter in the performance assessment of the proposed high-level waste repository at Yucca Mountain, Nevada, USA. Reliability Engineering and System Safety, 2001, 73(2): 167-176.
[17] Lu Z Z, Song S F, Li H S. Structural reliability and reliability sensitivity analysis. Beijing: Science Press, 2009: 74-84. (in Chinese) 吕震宙, 宋述芳, 李洪双. 结构机构可靠性及可靠性灵敏度分析. 北京: 科学出版社, 2009: 74-84.
[18] Law A M, Kelton W D. Simulation modeling and analysis. New York: McGraw-Hill Company, 1982: 242-267.
[19] Cramer E J. Problem formulation for multidisciplinary optimization. SIAM Journal of Optimization, 1994, 4(4): 754-776.
文章导航

/