结合功率器件非稳态导热的温度变化规律,采用非稳态的测试方法,对功率器件在不同条件下得到的时间常数及稳态温度的预测精度进行了测试和分析;并以此为依据,提出了一种综合利用功率器件升温及降温曲线,从而有效降低功率器件测试温升幅度的方法。实验及分析结果表明,在给定5%的误差范围内,单独采用温升测试数据对稳态温度进行预测时,温升测试幅度需达到总温升的70%左右。而综合利用升温及降温阶段的测试数据时,温升幅度可以降低至40%左右,对应的温升测试时间也缩短为前者的1/2。从而可以有效提高功率器件的热测试效率,并尽可能降低测试对器件造成的损害。
Combined with the temperature variation laws of power electronic devices in unsteady-state heat conduction, time constant and the prediction error of steady-state temperature in different test conditions are measured by unsteady test method. Based on this, a method that using test data both in heating and cooling phases of the power electronic devices is proposed, which can reduce the temperature rise in heating phase effectively. Experimental results show that the temperature increase ratio reaches 70% of the total temperature rise when only using the test data in heating phase to predict the steady-state temperature within the given error of 5%. While, the temperature increase ratio can be reduced to 40% when using the teat data both in heating and cooling phases, and the corresponding test time can be reduced to 1/2 of the former. With the proposed method, the test efficiency can be improved and the impact of testing on the devices can be minimized.
[1] Fu G C, Wang X F, Jiang T M. Finite volume method in thermal analysis of avionics. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(6): 716-720. (in Chinese) 付桂翠, 王香芬, 姜同敏. 高可靠性航空电子设备热分析中的有限体积法. 北京航空航天大学学报, 2006, 32(6): 716-720.
[2] Su X H. Analysis of heat sink for rejected condenser heat of loop heat pipes for cooling avionics. Journal of Aerospace Power, 2010, 25(9): 1942-1947. (in Chinese) 苏向辉. 航空电子设备冷却用环路热管冷凝器热沉分析. 航空动力学报, 2010, 25(9): 1942-1947.
[3] Xie X L, He Y L, Tao W Q, et al. An experimental investigation on a novel high performance integrated heat pipe-heat sink for high-flux chip cooling. Applied Thermal Engineering, 2008, 28(5-6): 433-439.
[4] Qian Z M, Zhang J M, Xie X G, et al. Process in power electronic system integration. Transactions of China Electrotechnical Society, 2006, 21(3): 1-14. (in Chinese) 钱照明, 张军明, 谢小高, 等. 电力电子系统集成研究进展与现状. 电工技术学报, 2006, 21(3): 1-14.
[5] Anandan S S, Ramalingam V. Thermal management of electronics: a review of literature. Thermal Science, 2008, 12(2): 5-26.
[6] Xu D G, Li X R. Power electronics in extreme temperature applications. Transactions of China Electrotechnical Society, 2006, 21(3): 15-23. (in Chinese) 徐殿国, 李向荣. 极限温度下的电力电子技术. 电工技术学报, 2006, 21(3): 15-23.
[7] Etemoglu A B. A brief survey and economical analysis of air cooling for electronic equipments. International Communications in Heat and Mass Transfer, 2007, 34(1): 103-113.
[8] Ryan J, Glen M, Jachuck R, et al. Integrated thermal management techniques for high power electronic devices. Applied Thermal Engineering, 2004, 24(8-9): 1142-1156.
[9] Salem T E, Ibitayo D, Geil B R. Validation of infrared camera thermal measurements on high-voltage power electronic components. IEEE Transactions on Instrument and Measurement, 2007, 56 (5): 1973-1978.
[10] Yu J Z, Gao H X, Xie Y Q. Thermal design and analysis technology of electronic equipments. 2nd ed. Beijing: Beihang University Press, 2008: 10-11. (in Chinese) 余建祖, 高红霞, 谢永奇. 电子设备热设计及分析技术. 2版. 北京: 北京航空航天大学出版社, 2008: 10-11.
[11] Ozturk E, Tari I. Forced air cooling of CPUs with heat sinks: a numerical study. IEEE Transactions on Components and Packaging Technologies, 2008, 31(3): 650-660.
[12] Malinari S. Uncertainty analysis of thermophysical property measurements of solids using dynamic methods. International Journal of Thermophysics, 2007, 28(1): 20-32.
[13] Stofanikl V, Markovi M, Bohá V, et al. RT-Lab-the equipment for measuring thermophysical properties by transient methods. Measurement Science Review, 2007, 7(3): 15-18.
[14] Yang S M, Tao W Q. Heat transfer theory. 3rd ed. Beijing: Higher Education Press, 1998: 4-5, 66-78. (in Chinese) 杨世铭,陶文铨. 传热学. 3版. 北京:高等教育出版社, 1998: 4-5, 66-78.
[15] Vicor Corporation. Design guide & applications manual for maix, mini, micro family DC-DC converters and accessory modules. U.S. Vicor Corporation, Rev. 4.1. 2011: 25-29.