电子与自动控制

具有碰撞角约束的三维圆轨迹制导律

  • 胡锡精 ,
  • 黄雪梅
展开
  • 北京控制与电子技术研究所, 北京 100038

收稿日期: 2011-06-13

  修回日期: 2011-08-19

  网络出版日期: 2012-03-24

Three-dimensional Circular Guidance Law with Impact Angle Constraints

  • HU Xijing ,
  • HUANG Xuemei
Expand
  • Beijing Institute of Control and Electronic Technology, Beijing 100038, China

Received date: 2011-06-13

  Revised date: 2011-08-19

  Online published: 2012-03-24

摘要

针对再入飞行器带碰撞角约束的导引问题,设计了一种新型三维(3D)制导律。改进并扩展了圆轨迹导引算法,定义了2个圆轨迹跟踪误差变量。通过对导引任务的分析,提出闭环修正导引方法。在此基础上,对再入飞行器制导过程的动力学方程进行解析推导,设计出能适应再入飞行器速度大小变化的三维闭环圆轨迹制导律(3CCGL)。数学仿真结果表明:此制导律能导引再入飞行器沿终端约束方向精确命中目标;同已有算法相比,该制导算法优势明显,其导引的飞行路径短,终端碰撞速度大,并能实现大角度转向攻击,大幅提高再入飞行器的末段机动能力。

本文引用格式

胡锡精 , 黄雪梅 . 具有碰撞角约束的三维圆轨迹制导律[J]. 航空学报, 2012 , (3) : 508 -519 . DOI: CNKI:11-1929/V.20111011.1411.003

Abstract

A novel three-dimensional (3D) guidance law is proposed for a reentry vehicle with impact angle constraints. To make the circular guidance more applicable, two deviation variables are defined. Then a closed-loop modification method is presented for the mission. Furthermore, a 3D closed-loop circular guidance law (3CCGL) for varying velocities is derived by solving the dynamical equations of the reentry vehicle. The simulation results demonstrate that the 3CCGL can assure the reentry vehicle to impact the target accurately from a specified direction. Compared with another law from the literature, the proposed guidance law is shown to perform favorably with shorter path length, larger terminal velocity and great improvement in the terminal maneuverability of the reentry vehicle in a large-angle turning engagement scenario.

参考文献

[1] Hu Z D, Guo C F, Cai H. Integrated guidance law of reentry maneuvering warhead with terminal angular constraint. Journal of National University of Defense Technology, 2008, 30(3): 21-26. (in Chinese) 胡正东, 郭才发, 蔡洪. 带落角约束的再入机动弹头的复合导引律. 国防科技大学学报, 2008, 30(3): 21-26.

[2] Lu P, Doman D B, Schierman J D. Adaptive terminal guidance for hypervelocity impact in specified direction. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 269-278.

[3] Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1817-1822.

[4] Ratnoo A, Ghose D. Impact angle constrained guidance against nonstationary nonmaneuvering targets. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 269-275.

[5] Chen X L, Hua W H. Ground target interception proportional navigation law with terminal constraints. Journal of Ballistics, 2010, 22(2): 15-18. (in Chinese) 陈兴林, 花文华. 具有终端约束的地面目标拦截比例导引. 弹道学报, 2010, 22(2): 15-18.

[6] Lee Y I, Ryoo C K, Kim E. Optimal guidance with constraints on impact angle and terminal acceleration. AIAA-2003-5795, 2003.

[7] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.

[8] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492.

[9] Shaferman V, Shima T. Linear quadratic differential games guidance law for imposing a terminal intercept angle. AIAA-2008-7302, 2008.

[10] Shaferman V, Shima T. Linear quadratic guidance laws for imposing a terminal intercept angle. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1400-1412.

[11] Ohlmeyer E J, Phillips C A. Generalized vector explicit guidance. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 261-268.

[12] Han D P, Sun W M, Zheng Z Q, et al. A new 3D guidance law based on Lie-group method. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 468-475. (in Chinese) 韩大鹏, 孙未蒙, 郑志强, 等. 一种基于李群方法的新型三维制导律设计. 航空学报, 2009, 30(3): 468-475.

[13] Harl N, Balakrishnan S N. Impact time and angle guidance with sliding mode. AIAA-2009-5897, 2009.

[14] Ratnoo A, Ghose D. SDRE based guidance law for impact angle constrained trajectories. AIAA-2007-6539, 2007.

[15] Ratnoo A, Ghose D. State-dependent Riccati-equation-based guidance law for impact-angle-constrained trajectories. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 320-325.

[16] Manchester I R, Savkin A V. Circular navigation missile guidance with incomplete information and uncertain autopilot model. AIAA-2003-5448, 2003.

[17] Manchester I R, Savkin A V. Circular navigation guidance law for precision missile/target engagements. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 314-320.

[18] Lam V C. Circular guidance laws with and without terminal velocity direction constraints. AIAA-2008-7304, 2008.
文章导航

/