端面密封动态性能模型的多维求解复杂性限制了对密封的实时动态监测,为此建立了基于本征正交分解(POD)方法的密封性能求解降阶模型,以获取实时的密封性能特征参数,包括非接触密封微小间隙产生的液膜轴向力及沿着不同方向的液膜力矩.基于降解模型提出了非接触端面密封动态监测的原理,并分析了不同液膜振动频率下的降阶模型的计算误差,完成了对一组不同密封间隙及液膜振动频率下的水润滑端面液膜轴向力及力矩的数值仿真.研究结果表明提出的基于POD降阶模型的非接触端面密封动态监测能达到较高的分析精度,这对于非接触端面密封的动态控制及研究瞬态启动过程中的密封动静特性具有重要的作用.
To solve the complex multi-dimensional problem arising in the process of obtaining the real-time performance of a non-contact face seal, a reduced order model based on proper orthogonal decomposition (POD) is proposed. With the model, the dynamic seal performance parameters are computed, including the liquid film force generated by the sealing micro-gap and different directional moments induced by the liquid film. With the POD reduced order model, the principle for the real-time monitoring of the non-contact face seal performance is presented, and the calculation error for different vibration frequencies of axial positions are analyzed. With the principle, a numerical simulation of a water-lubricated non-contacting face seal with different seal gaps and liquid vibration frequencies is implemented, and the liquid film force, torque and their calculation errors are obtained. The results show the high accuracy of the non-contact seal dynamic monitor based on the proposed POD reduced-order model, which will help to promote the level in researching the dynamic control of non-contacting face seals and the static and dynamic performances of seals during the transient start-up stage.
[1] Zhou J F, Gu B Q. Controllability of spiral groove mechanical seal. Chinese Journal of Mechanical Engineering, 2009, 45(1): 106-110. (in Chinese) 周剑锋, 顾伯勤. 螺旋槽机械密封的可控性. 机械工程学报, 2009, 45(1): 106-110.
[2] Miller B, Green I. Semi-analytical dynamic analysis of spiral-grooved mechanical gas face seals. ASME Journal of Tribology, 2003, 125(2): 403-413.
[3] Zhang H, Miller B A, Landers R G. Nonlinear modeling of mechanical gas face seal systems using proper orthogonal decomposition. ASME Journal of Tribology, 2006, 128(4): 817-827.
[4] Zirkelback N, San andès L. Effect of frequency excitation on force coefficients of spiral groove gas seals. ASME Journal of Tribology, 1999, 121(4): 853-863.
[5] Zhang G Y, Yuan X Y, Zhao W G, et al. Theoretical and experimental approach of separation speed of spiral groove face seals. Chinese Journal of Mechanical Engineering, 2008, 44(8): 55-60. (in Chinese) 张国渊, 袁小阳, 赵伟刚, 等. 螺旋槽端面密封脱开转速的理论及实验研究. 机械工程学报, 2008, 44(8): 55-60.
[6] Ma G, Xi P, Shen X M, et al. Analysis of quasi-dynamic characteristics of compliant floating ring gas cylinder seal. Journal of Aerospace Power, 2010, 25(5): 1190-1196. (in Chinese) 马纲, 席平, 沈心敏,等. 柔性支承浮环柱面气膜密封准动态特性分析. 航空动力学报, 2010, 25(5): 1190-1196.
[7] Liu Z, Liu Y, Liu X. Optimization design of main parameters for double spiral grooves face seal. Science in China, Series E: Technological Sciences, 2007, 50(4): 448-453.
[8] Li Z G, Zhang G Y, Yuan X Y, et al. Static and dynamic characteristics of hydrodynamic mechanical seal. China Mechanical Engineering, 2006, 17(5): 457-460. (in Chinese) 李治国, 张国渊, 袁小阳, 等. 流体动静压端面密封的静动特性分析. 中国机械工程, 2006, 17(5): 457-460.
[9] Zhang G Y, Zhao W G, Yan X T, et al. Experimental approach for water-lubricated high-speed controllable spiral-groove face seals. Journal of Aerospace Power, 2011, 26(4): 947-953. (in Chinese) 张国渊, 赵伟刚, 闫秀天, 等. 可控式液体润滑高速螺旋槽端面密封试验研究. 航空动力学报, 2011, 26(4): 947-953.
[10] Zhang G Y, Zhao W G, Yan X T, et al. Theoretical and experimental study on characteristics of water-lubricated double spiral grooved seals. Tribology Transactions, 2011, 54(3): 362-369.
[11] Wang A X, Ma Y C, Fu Y. Proper orthogonal decomposition for the nons-tationary Navier-Stokes equations based on two-grid method. Basic Sciences Journal of Textile Universities, 2009, 22(1): 76-81. (in Chinese) 王阿霞, 马逸尘, 付英. 基于双重网格法的非定常N-S方程POD数值模拟. 纺织高校基础科学学报, 2009, 22(1): 76-81.
[12] Amabiliam, Sarkar A, Paidoussism P. Chaotic vibrations of circular cylindrical shells: Galerkin versus reduced-order models via the proper orthogonal decomposition method. Journal of Sound and Vibration, 2006, 290(3-5): 736-762.
[13] Temam R. Navier-Stokes equations: theory and numerical analysis. New York: Academic Press, 2001.
[14] Homescu C, Petzold L, Serban R. Error estimation for reduced-order models of dynamical systems. Journal of Numerical Analysis, 2005, 43(4): 1693-1714.
[15] Smith T R, Moehlis J, Holmes P. Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dynamics, 2005, 41(1-3): 275-307.
[16] Chen G, Li Y M, Yang G R, et al. Design of active control law for aeroelastic systems via reduced order models. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 12-18. (in Chinese) 陈刚, 李跃明, 闫桂荣, 等. 基于降阶模型的气动弹性主动控制律设计. 航空学报, 2010, 31(1): 12-18.