流体力学与飞行力学

基于升力面自由尾迹的直升机旋翼悬停性能参数影响研究

展开
  • 1. 清华大学 航天航空学院, 北京 100084;
    2. 南京航空航天大学 航空宇航学院, 江苏 南京 210016
谭剑锋 男,博士研究生.主要研究方向:旋翼动力学和总体设计. Tel: 010-51537573 E-mail: windtam2003@yahoo.com.cn
王浩文 男,博士,教授,博士生导师.主要研究方向:旋翼动力学、直升机结构强度及振动载荷分析. Tel: 010-62792661 E-mail: bobwang@mail.tsinghua.edu.cn
林长亮 男,博士研究生.主要研究方向:直升机动力学. Tel: 025-84890690 E-mail: lclnuaa@yahoo.com.cn

收稿日期: 2011-05-27

  修回日期: 2011-07-11

  网络出版日期: 2012-02-24

Analysis of Influence of Rotor Parameters on Rotor Hover Performance by Lifting-Surface and Free Wake Method

Expand
  • 1. School of Aerospace, Tsinghua University, Beijing 100084, China;
    2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2011-05-27

  Revised date: 2011-07-11

  Online published: 2012-02-24

摘要

最大悬停效率(FMmax)作为衡量旋翼悬停性能的常用指标,反映了旋翼能达到的最大悬停效率,但不能反映旋翼在一定桨叶载荷范围内保持高悬停效率的能力,本文给出了旋翼悬停保持能力的定义.为更准确地反映桨叶涡量分布,建立了基于升力面理论的桨叶气动模型;考虑有弯度翼型的影响,将涡量布置于翼型中弧线,随后基于自由尾迹模型、耦合刚性桨叶挥舞运动方程、翼型动态失速模型以及二阶精度时间步进格式建立了升力面自由尾迹方法.通过计算模型旋翼在不同桨尖马赫数下的悬停效率,并与试验数据对比,验证了方法的准确性.相比于升力线自由尾迹方法,建立的升力面自由尾迹分析方法能显著提高旋翼悬停效率计算精度.最后分析旋翼关键设计参数对悬停性能的影响,得到设计参数影响旋翼悬停保持能力的新规律.

本文引用格式

谭剑锋, 王浩文, 林长亮 . 基于升力面自由尾迹的直升机旋翼悬停性能参数影响研究[J]. 航空学报, 2012 , 33(2) : 249 -257 . DOI: CNKI:11-1929/V.20111031.1056.003

Abstract

The maximum figure of Merit (FMmax) is the most important index for a rotor which indicates the greatest hover efficiency the rotor can achieve. However, it cannot reflect the rotor's ability to keep a high Figure of Merit (FM) in certain blade load ranges. Therefore a new concept, the hover hold ability (HHA) of roltor is defined in this paper. In order to describe the distribution of vortices on a blade more accurately, the lifting-surface is used in the blade aerodynamic model. To take into consideration different airfoils, vortices of a blade are set on the middle line of an airfoil. Based on the free-wake model, a calculation method of rotor performance is established which includes the lifting-surface model, rigid blade flap equation, airfoil dynamics stall model and second-order time accurate algorithm. The model rotor FM with different tip Mach numbers (Matip) is calculated and compared with test results to validate the precision of the method. Compared with the free-wake model which includes a lifting-line model, more accurate FM of rotor is attained. Finally, the influence of critical rotor design parameters on rotor hover performance is analyzed, and new laws for the effect of design parameters on rotor hover hold ability are obtained.

参考文献

[1] Pitt D M, Peters D A. Theoretical prediction of dynamic inflow derivatives. Vertica, 1981, 5(1): 21-34.

[2] He C J. Development and application of a generalized dynamic wake theory for lifting rotors. Georgia: Georgia Institute of Technology, 1989.

[3] Bagai A, Leishman J G. Rotor free-wake modeling using a pseudo-implicit algorithm. Journal of Aircraft, 1995, 32(6): 1276-1285.

[4] Bhagwat M, Leishman J G. Stability consistency and convergence of time-marching free-vortex rotor wake algorithms. Journal of the American Helicopter Society, 2001, 46(1): 59-71

[5] Karthikeyan D, James D. High resolution wake capturing methodology for hovering rotors. Journal of the American Helicopter Society, 2007, 52(2): 110-122.

[6] Zhao Q J, Xu G H. Aerodynamic performance of rotor with new type blade-tip in hover based upon test and numerical investiations. Acta Aeronautica et Astronautica Sinica, 2009, 30(3): 422-429. (in Chinese) 招启军, 徐国华. 新型桨尖旋翼悬停气动性能试验及数值研究. 航空学报, 2009, 30(3): 422-429.

[7] Conlisk A T. Modern helicopter rotor aerodynamics. Progress in Aerospace Science, 2001, 37(5): 419-475.

[8] Wang H W, Gao Z. Rotor vibratory load prediction based on generalized forces. Chinese Journal of Aeronautics, 2004, 17(1): 28-33.

[9] Li C H, Xu G H. The rotor free-wake analytical method for tiltrotor aircraft in hover and forward flight. Acta Aerodynamica Sinica, 2005, 23(2): 152-156. (in Chinese) 李春华, 徐国华. 悬停和前飞状态倾转旋翼机的旋翼自由尾迹计算方法. 空气动力学学报, 2005, 23(2): 152-156.

[10] Johson W. Airloads and wake models for a comprehensive helicopter analysis. Vertica, 1990, 14(3): 225-300.

[11] Mello O, Rand O. Unsteady frequency-domain analysis of helicopter non-rotating lifting surface. Journal of the American Helicopter Society, 1991, 36(2): 70-81.

[12] Bengin A. Three-dimensional rotor flow calculation. Faculty of Mechanical Engineering, 2005, 33(1): 33-39.

[13] JanakiRam R, Smith R. Aerodynamic design of a new affordable main rotor for the apache helicopter. The American Helicopter Society 59th Annual Forum. Phoenix, Arizona: AHS, 2003: 1-17.

[14] Leishman J G. Principles of helicopter aerodynamics second edition. Cambridge: Cambridge University Press, 2007: 70-74.

[15] Bhagwat M J. Mathematical modeling of the transient dynamics of helicopter rotor wakes using a time-accurate free-vortex method. Maryland: University of Maryland College, 2001.

[16] Tan J F. Analysis of rotor aerodynamic response under manoeuvring conditions. NanJing: Cdlege of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) 谭剑锋. 操纵条件下旋翼气动响应分析. 南京: 南京航空航天大学航空宇航学院, 2009.

[17] Bhagwat M J, Leishman J G. Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations//The 58th Annual Forum and Technology Display of the American Helicopter Society International. Montreal, Canada: AHS, 2002: 11-13.

[18] Tan J F, Zhang C L, Wang H W, et al. Computations of unsteady aerodynamic characteristic of rotor airfoil at low mach numbers. Helicopter Technique, 2009(2): 1-6. (in Chinese) 谭剑锋, 张呈林, 王浩文, 等. 旋翼翼型低Ma数动态失速特性计算. 直升机技术, 2009(2): 1-6.

[19] Caradonna F X, Tung C. Experimental and analytical studies of a model helicopter rotor in hover. NASA TM-81232, 1982.

[20] Jewel J W. Compressibility effects on the hovering performance of a two-blade 10-foot-diameter helicopter rotor operating at tip mach numbers up to 0.98. NASA-TN-D-245, 1960.

[21] Peter A, Robert Z. Titanium UTTAS main rotor blade. The 31st Annual National Forum of the American Helicopter Society. Washington D. C. : AHS, 1975: 1-12.
文章导航

/