流体力学与飞行力学

输入受限的吸气式高超声速飞行器自适应Terminal滑模控制

展开
  • 1. 海军航空工程学院 战略导弹工程系, 山东 烟台 264001;
    2. 北京图形研究所, 北京 100029;
    3. 海军航空工程学院 控制工程系, 山东 烟台 264001
李静 女,博士,讲师,在站博士后.主要研究方向:飞行器导航、制导与控制、非线性控制、图像识别等. Tel: 0535-6635778 E-mail: lijing19772006@yahoo.com.cn
左斌 男,博士,讲师.主要研究方向:非线性控制、自适应控制等. Tel: 0535-6635644 E-mail: zuobin97117@163.com
段洣毅 男,博士,高级工程师.主要研究方向:系统工程、对象建模、网络通信等. Tel: 010-66804153 E-mail: scl@glc.cn.net
张俊 男,硕士,高级工程师.主要研究方向:系统工程、网络通信、图像识别等. Tel: 010-66804153 E-mail: zhangjunbj@163.com

收稿日期: 2011-05-16

  修回日期: 2011-07-10

  网络出版日期: 2012-02-24

基金资助

国家自然科学基金(60674090);国家"863"计划(2010AAJ140)

Adaptive Terminal Sliding Mode Control for Air-breathing Hypersonic Vehicles Under Control Input Constraints

Expand
  • 1. Department of Strategic Missile Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. Beijing Institute of Graphics, Beijing 100029, China;
    3. Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2011-05-16

  Revised date: 2011-07-10

  Online published: 2012-02-24

摘要

针对吸气式高超声速飞行器的纵向运动模型,研究了输入受限时控制系统的设计问题,提出了一种内外环相结合的自适应Terminal滑模控制方法.以迎角和俯仰角速度作为内环控制对象,考虑到气动弹性模态和外部干扰,采用反步设计方法,设计出升降舵的自适应Terminal滑模控制律;以飞行速度作为外环控制对象,采用动态逆设计方法,设计出输入燃料当量比的动态逆自适应控制律,同时利用多层神经网络逼近控制律的饱和特性.基于Lyapunov稳定性理论,证明了采用此控制策略可以保证闭环控制系统的所有信号都是指数收敛至系统原点的一个有界邻域内,同时飞行器的气动弹性模态都是渐近稳定的.仿真结果表明,此控制策略能有效地处理吸气式高超声速飞行器在纵向运动过程中控制输入饱和受限的约束,在完成控制目标的同时,具有良好的过渡过程品质.

本文引用格式

李静, 左斌, 段洣毅, 张俊 . 输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J]. 航空学报, 2012 , 33(2) : 220 -233 . DOI: CNKI:11-1929/V.20111014.1505.003

Abstract

An adaptive terminal sliding mode control method based on the inner-loop and outer-loop systems is designed and analyzed for the longitudinal dynamics of air-breathing hypersonic vehicles under control input constraints. Considering the angle of attack and the pitch rate as the states of the inner-loop system with aeroelastic modes and disturbances, an adaptive terminal sliding mode control law of the elevator deflection is proposed based on backstepping design. Considering the velocity as the state of the outer-loop system, a dynamic inversion adaptive control law of the equivalence ratio is also obtained based on dynamic inversion design. Moreover, two multilayer neural networks are used for the approximation of the saturation property of two control inputs, respectively. Based on Lyapunov stability theorem, all signals of the closed-loop system are bounded and exponentially converge to the neighborhood of the origin globally. Furthermore, aeroelastic modes of air-breathing hypersonic vehicles are asymptotically stable. Simulation results demonstrate the effectiveness of the proposed control method in saturation alleviation of the longitudinal dynamics of air-breathing hypersonic vehicles. In additional, the control method not only realizes the control aim, but also improves transient performance of the controlled system.

参考文献

[1] Lohsoonthorn P, Jonckheere E, Dalzell S. Eigenstructure vs constrained H design for hypersonic winged cone. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 648-658.

[2] Lind R. Linear parameter-varying modeling and control of structural dynamics with aerothermoelastic effects. Journal of Guidance, Control, and Dynamics, 2002, 25(4): 733-739.

[3] Kuipers M, Mirmirani M, Ioannou P, et al. Adaptive control of an aeroelastic airbreathing hypersonic cruise vehicle. AIAA-2007-6326, 2007.

[4] Sigthorsson D O, Jankovsky P, Serrani A, et al. Robust linear output feedback control of an airbreathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1052-1066.

[5] Groves K P, Sigthorsson D O, Serrani A, et al. Reference command tracking for a linearized model of an air-breathing hypersonic vehicle. AIAA-2005-6144, 2005.

[6] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 577-585.

[7] Parker J T, Serrani A, Yurkovich S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-869.

[8] Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 401-416.

[9] Xu H J, Mirmirani M, Ioannou P A. Robust neural adaptive control of a hypersonic aircraft . AIAA-2003-5641, 2003.

[10] Wallner E M, Well K H. Nonlinear flight control design for the X-38 using CMAC neural networks. AIAA-2001-4042, 2001.

[11] Huang X L, Ge D M. Robust linear parameter-varying control for longitudinal maneuvering flight of air-breathing hypersonic vehicle. Journal of Astronautics, 2010, 31(7): 1789-1797. (in Chinese) 黄显林, 葛东明. 吸气式高超声速飞行器纵向机动飞行的鲁棒线性变参数控制. 宇航学报, 2010, 31(7): 1789-1797.

[12] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387.

[13] Dou Y B, Xu M, An X M, et al. Flutter analysis for a fin in hypersonic flow. Engineering Mechanics, 2009, 26(11): 232-237. (in Chinese) 窦怡彬, 徐敏, 安效民, 等. 高超声速舵面颤振分析. 工程力学, 2009, 26(11): 232-237.

[14] Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11. (in Chinese) 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述. 航空学报, 2010, 31(1): 1-11.

[15] Bolender M A, Doman D B. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle. AIAA-2005-6255, 2005.

[16] Ge D M, Huang X L. Control-oriented dynamic characteristics analysis for hypersonic flight vehicles. Aerospace Control, 2010, 28(4): 3-9.(in Chinese) 葛东明, 黄显林. 面向控制的高超声速飞行器动力学特性分析. 航天控制, 2010, 28(4): 3-9.

[17] Zhang T, Ge S S, Hang C C. Design and performance analysis of a direct adaptive controller for nonlinear systems. Automatica, 1999, 35(11): 1809-1817.

[18] Li H R, Wang X N, He D K, et al. Method to determine structure of feedforward neural network by optimization calculation. Journal of System Simulation, 2009, 21(1): 104-107. (in Chinese) 李鸿儒, 王晓楠, 何大阔, 等. 一种优化计算确定神经网络结构的方法. 系统仿真学报, 2009, 21(1): 104-107.

[19] Wang W C. Neural network and its application in automobile engineering . Beijing: Beijing Institute of Technology Press, 1998. (in Chinese) 王文成. 神经网络及其在汽车工程中的应用. 北京: 北京理工大学出版社, 1998.
文章导航

/