针对叶片加工过程中质量精度不高的问题,提出了基于动态Bayesian网络的叶片加工质量监控与溯源方法.利用动态Bayesian网络建立起叶片加工工序间的相互联系,实现对整个加工过程的控制.基于Bayesian网络对影响加工工序的因素集建立因果联系,采用多元统计过程控制中的T2控制图完成对各工序影响因素集的监控.进行误差溯源时,根据Bayesian网络建立的因果关系对失控样本的T2统计量依据原因变量进行误差分解,并构建各分解变量的控制限,将其作为误差源判定的条件.通过对某叶片加工过程的仿真,验证了所提方法的有效性.
[1] Chiang L H, Russell E L, Braatz R D. Fault detection and diagnosis in industrial systems. New York:Springer-Verlag, 2001.
[2] Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fault detection and diagnosis part I: quantitative model-based methods. Computers and Chemical Engineering, 2003, 27(3): 293-311.
[3] Chen W D, Miao R, Zhao Y Z, et al. Multivariate statistical process diagnosis based on path diagram. Journal of Shanghai Jiaotong University, 2010, 44(12): 1758-1762. (in Chinese) 陈文多, 苗瑞, 赵言正, 等. 基于路径图的多元统计过程诊断. 上海交通大学学报, 2010, 44(12): 1758-1762.
[4] Chan F T. Application of a hybrid case-based reasoning approach in electroplating industry. Expert Systems with Applications, 2005, 29(1): 121-130.
[5] Patton R J, Frank P M, Clark R N. Issues of fault diagnosis for dynamic systems. New York: Springer, 2000.
[6] Du S C, Xi L F, Pan E S. Modeling & controlling of product quality in serial-parallel hybrid multi-stage manufacturing systems. Computer Integrated Manufacturing Systems, 2006, 12(7): 1068-1073. (in Chinese) 杜世昌, 奚立峰, 潘尔顺. 串并联混合式多阶段制造系统产品质量建模与控制. 计算机集成制造系统, 2006, 12(7): 1068-1073.
[7] Liu D Y, Jiang P Y. Fluctuation analysis of process flow based on error propagation network. Chinese Journal of Mechanical Engineering, 2010, 46(2): 14-21. (in Chinese) 刘道玉, 江平宇, 基于误差传递网络的工序流波动分析. 机械工程学报, 2010, 46(2): 14-21.
[8] Jin M, Tsung F. A chart allocation strategy for multistage processes. IIE Transactions, 2008, 41(9): 790-803.
[9] Li Y, Tsung F. False discovery rate-adjusted charting schemes for multistage process fault diagnosis and isolation. Technometrics, 2008, 51(2): 186-205.
[10] Du F Z, Tang X Q, Sun J. ARL computation and parameters optimization for MEWMA control chart based on the Markov chain. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8): 974-978. (in Chinese) 杜福洲, 唐晓青, 孙静. MEWMA控制图 ARL计算及参数优化. 北京航空航天大学学报, 2006, 32 (8): 974-978.
[11] Du F Z, Sun J, Tang X Q. Run length analysis for multivariate cumulative sum control chart based on Markov chains. Journal of Tsinghua University: Science and Technology, 2007, 47(2): 169-172. (in Chinese) 杜福洲, 孙静, 唐晓青. 基于Markov 链的MCUSUM控制图链长分析. 清华大学学报:自然科学版, 2007, 47(2): 169-172.
[12] Xiang L, Tsung F. Statistical monitoring of multistage processes based on engineering models. IIE Transactions, 2008, 40(10): 957-970.
[13] Zantek P F, Li S, Chen Y. Detecting multiple special causes from multivariate data with applications to fault detection in manufacturing. IIE Transactions, 2007, 39(8): 771-782.
[14] Kamal H, Meisam P, Hosein M. Fault diagnosis and classification based on wavelet transform and neural network. Progress in Nuclear Energy, 2011, 53(1): 41-47.
[15] Doganaksoy N, Faltin F W. Tucker W T. Identification of out of control multivariate characteristic in a multivariable manufacturing environment. Communications in Statistics, 1991, 20(9): 2775-2790.
[16] Cui X, Guo W, Lin L, et al. Covariate-adjusted nonlinear regression. Annals of Statistics, 2009, 37(4): 1839-1870.
[17] Senturk D. Covariate-adjusted varying coefficient models. Biostatistics, 2006, 7(2): 235-251.
[18] Maravelakis P E, Bersimis S, Panaretos J, et al. Identifying the out of control variable in a multivariate control chart. Journal of Quality Technology, 2002, 31(12): 2391-2408.
[19] Aparisi F, Avendano G, Sanz J. Techniques to interpret T2 control chart signals. IIE Transactions, 2006, 38(8): 647-657.
[20] Sun H C, Yan Z Y, Xie L Y. Recognition based on wavelet neural network for sucker rod's defects. Journal of Northeastern University: Natural Science, 2008, 29(2): 258-261. (in Chinese) 孙红春,阎志颖,谢里阳. 基于小波神经网络的抽油杆缺陷识别. 东北大学学报:自然科学版, 2008, 29(2): 258-261.
[21] Nie S C, Tang X Q. Research on quality fault diagnosis in mechanical machining process based on genetic algorithm. Acta Aeronautica et Astronautica Sinica, 2001, 22(6): 521-524. (in Chinese) 聂胜才, 唐晓青. 基于基因算法的加工质量故障诊断研究与实现. 航空学报, 2001, 22(6): 521-524.
[22] Niaki S T A, Abbasi B. Fault diagnosis in multivariate control chart using artificial neural networks. Quality Reliability Engineering International, 2005, 21(8): 825-840.
[23] Zeng L, Zhou S. Variability monitoring of multistage manufacturing processes using regression adjustment methods. IIE Transactions, 2008, 40(2): 109-121.
[24] Bersimis S, Psarakis S, Panaretos J. Multivariate statistical process control charts: an overview. Quality Reliability Engineering International, 2007, 23(5): 517-543.
[25] Mason R L, Tracy N D, Young J C. Decomposition of T2 for multivariate control chart interpretation. Journal of Quality Technology, 1995, 27(2): 109-119.
[26] Li J, Jin J, Shi J. Causation-based T2 decomposition for multivariate process monitoring and diagnosis. Journal of Quality Technology, 2008, 40(1): 46-58.