电子与自动控制

基于泵式流体回路的小卫星姿控/热控一体化执行机构设计

展开
  • 哈尔滨工业大学 卫星技术研究所, 黑龙江 哈尔滨 150001
耿云海 男,博士,教授,博士生导师.主要研究方向: 小卫星控制系统设计技术、飞行器动力学与控制技术、飞行器姿态与轨道确定技术、飞行器系统仿真技术. Tel: 0451-86414117 E-mail: gengyh@hit.edu.cn
单晓微 女,硕士研究生.主要研究方向: 飞行器动力学与控制. Tel: 0451-86402357-8503 E-mail: shanxw_hit@163.com

收稿日期: 2011-04-27

  修回日期: 2011-05-16

  网络出版日期: 2012-01-16

基金资助

国家"863"计划(2010AA7020101);中国博士后科学基金(20090450126)

Design of a Combined Attitude and Thermal Control System for Small Satellites Based on Mechanically- pumped Fluid Loop

Expand
  • Research Center of Satellite Technology, Harbin Institute of Technology, Harbin 150001, China

Received date: 2011-04-27

  Revised date: 2011-05-16

  Online published: 2012-01-16

摘要

主要研究了小卫星姿控/热控一体化执行机构的设计问题.首先,根据流体回路中液体流速变化对小卫星产生力矩实现姿态控制、液体流动吸/散废热实现热控制的原理,提出一种姿控/热控一体化执行机构设计方案.然后针对该设计方案,利用以电机转速为变量的流体回路内压强和电磁力矩方程,推导了一体化执行机构姿控力矩模型;利用散热量随流体回路流速的变化,建立了一体化执行机构热控模型.最后,针对某小卫星设计了基于姿控/热控一体化执行机构的闭环控制系统,并针对该一体化执行机构设计了一种姿控/热控解耦算法,对其姿控/热控能力进行数学仿真验证,仿真结果证明了该一体化执行机构的有效性.

本文引用格式

耿云海, 单晓微, 陈雪芹, 张世杰 . 基于泵式流体回路的小卫星姿控/热控一体化执行机构设计[J]. 航空学报, 2012 , 33(1) : 147 -155 . DOI: CNKI:11-1929/V.20110810.1118.004

Abstract

This paper presents the design study of a combined attitude and thermal control actuator for small satellites. First, a design scheme of an attitude/thermal control actuator is proposed based on the principle that the annular flow in a fluid loop accelerated by mechanical pumps will exert torques on the satellite and absorb waste heat by circulation. Second, the attitude control torque model of this combined actuator is obtained in accordance with this scheme by using the equations derived for the electromagnetic torque and the fluid pressure with the motor speed as the independent variable. The heat model of this combined actuator is also built since heat dissipation changes with the flow rate of the fluid loop. Third, a closed-loop control system of a certain small satellite is designed based on the proposed combined actuator and an algorithm is defined to decouple the attitude and thermal control. Simulations are performed to demonstrate the effectiveness of the combined actuator for both attitude and thermal control.

参考文献

[1] Maynard R S. Fluidic momentum controller: U.S., 4, 776, 541. 1988-10-11.

[2] Wyatt T W, Swet C J. Combined fluid flywheel and propulsion system for spacecraft: U.S., 3, 862, 732. 1975-01-28.

[3] Rasmusson J K. Self contained rotator apparatus: US, 4, 662, 178. 1987-05-05.

[4] Lurie B J, Schie J A, Iskenderian T C. Fluid-loop reaction system: U.S., 5, 026, 008. 1991-06-25.

[5] Iskenderian T C. Liquid angular-momentum compensator. NASA Tech Briefs, 1989, 13(5): 80.

[6] Lurie B J, Schier J A. Liquid-ring attitude-control system for spacecraft. NASA Tech Briefs, 1990, 14(9): 82.

[7] Zhang S J, Cao X B, Shan X W, et al. Combined actuator of thermal control and fluid momentum wheel for spacecraft: China, 200910091063. 2010-01-27. (in Chinese) 张世杰, 曹喜滨, 单晓微, 等. 航天器热控制和液体动量轮一体化执行机构: 中国, 200910091063. 2010-01-27.

[8] Kelly A, McChesney C, Smith P, et al. A performance test of a fluidic momentum controller in three axes. Final Report ASE 463Q, Department of Aerospace Engineering Mechanics, The University of Texas at Austin, 2004.

[9] Kumar K D. Satellite attitude stabilization using fluid rings. Acta Mechanica, 2009, 208(1-2): 117-131.

[10] Varatharajoo R, Kahle R, Fasoulas S. Approach for combining spacecraft attitude and thermal control systems. Journal of Spacecraft and Rockets, 2003, 40(5): 657-664.

[11] Varatharajoo R, Ajir R, Ahmad T. Hybrid spacecraft attitude control system. International Journal of Multiphysics, 2007, 1(2): 221-230.

[12] Liu J, Li Y Z, Chang J, et al. A review of small satellite thermal control system. Spacecraft Environment Engineering, 2011, 28(1): 77-82. (in Chinese) 刘佳, 李运泽, 常静, 等. 微小卫星热控系统的研究现状及发展趋势. 航天器环境工程, 2011, 28(1): 77-82.

[13] Zhang L, Fan H L. Integrative analysis on thermal and flow performance of single-phase fluid loop system. Chinese Space Science and Technology, 2004, 24(4): 47-59. (in Chinese) 张立, 范含林. 单相流体回路系统的性能集成分析. 中国空间科学技术, 2004, 24(4): 47-59.

[14] Min G R, Guo S. Spacecraft thermal control. Beijing: Science Press, 1985: 55, 216-217. (in Chinese) 闵桂荣, 郭舜. 航天器热控制. 北京: 科学出版社, 1985: 55, 216-217.

[15] Zhang K W. Fluid mechanical principles: Vol.2. Beijing: China Machine Press, 2001: 164-178. (in Chinese) 张克危. 流体机械原理:下册. 北京: 机械工业出版社, 2001: 164-178.

[16] Lu P W. Practical control valve technology. Beijing: China Machine Press, 2006: 115, 123. (in Chinese) 陆培文. 调节阀实用技术. 北京: 机械工业出版社, 2006: 115, 123.

[17] Yang S M, Tao W Q. Heat transfer. 4th ed. Beijing: Higher Education Press, 2006: 474-476. (in Chinese) 杨世铭, 陶文铨. 传热学. 4版. 北京: 高等教育出版社, 2006: 474-476.

[18] Yang H D, Li R, Liu W G. The mathematical model of brushless DC motor and its simulation. Micromotor, 2003, 36(4): 8-10. (in Chinese) 杨浩东, 李榕, 刘卫国. 无刷直流电动机的数学模型及其仿真. 微电机, 2003, 36(4): 8-10.

[19] Cheng D X. Mechanical design handbook (offprint): hydraulic. Beijing: Chemical Industry Press, 2004: 17. (in Chinese) 成大先. 机械设计手册(单行本): 液压传动. 北京: 化学工业出版社, 2004: 17.

[20] Zhang L, Huang J R, Fan Y F. Experimental research of working fluid used in single-phase fluid loop system. Chinese Space Science and Technology, 2009, 29(1): 45-51. (in Chinese) 张立, 黄家荣, 范宇峰. 单相流体回路工质的试验研究. 中国空间科学技术, 2009, 29(1): 45-51.
文章导航

/