电子与自动控制

基于MLR的机动平台传感器误差配准算法

展开
  • 海军航空工程学院 信息融合研究所, 山东 烟台 264001
崔亚奇 男,博士研究生.主要研究方向: 误差配准、雷达数据处理、系统仿真. Tel: 0535-6635263 E-mail: cui_yaqi@126.com
何友 男,教授,博士生导师.主要研究方向: 信息融合,信号检测及其在军事信息系统中的运用. Tel: 0535-6635263 E-mail: xiongweimail@tom.com

收稿日期: 2011-04-22

  修回日期: 2011-05-05

  网络出版日期: 2012-01-16

基金资助

国家自然科学基金(61032001,60801049)

Mobile Platform Sensor Registration Algorithm Based on MLR

Expand
  • Research Institute of Information Fusion, Naval Aeronautical and Astronautical University, Yantai 264001, China

Received date: 2011-04-22

  Revised date: 2011-05-05

  Online published: 2012-01-16

摘要

基于固定平台传感器误差极大似然配准(MLR)算法,针对机动平台存在姿态角系统误差的问题,提出了对机动平台传感器系统误差和目标状态进行批处理离线估计的机动极大似然配准(MLRM)算法.该算法利用所有传感器对目标的量测值,通过把传感器量测向目标状态进行投影、对传感器系统误差和目标状态进行期望最大化迭代以及对目标的状态进行融合估计,最终实现量测、姿态角系统误差和目标状态的有效估计.仿真结果表明,该算法迭代收敛速度快,对系统误差估计精度高,对系统误差可观测性较低的配准环境的适应性强并且对传感器姿态角的相关性不敏感,具有很强的工程实用性.

本文引用格式

崔亚奇, 熊伟, 何友 . 基于MLR的机动平台传感器误差配准算法[J]. 航空学报, 2012 , 33(1) : 118 -128 . DOI: CNKI:11-1929/V.20111213.1132.001

Abstract

A maximum likelihood registration of mobile sensor (MLRM) algorithm is proposed in this paper to estimate sensor bias and target state off-line, and it is capable of batch processing. This algorithm is based on the maximum likelihood registration (MLR) algorithm for fixed platform sensor registration and aimed at solving the issue of attitude angle bias that exists in a mobile platform. The MLRM algorithm realizes effective estimate of measurement, attitude angle bias and target state by projection sensor measurements onto target state space, iteration of the maximizing expectation of sensor bias and target state and fusion target state estimation using the measurements from all sensors. The simulation result shows that the algorithm has fast convergence rate, high estimate precision of sensor bias and strong adaptability to low observability environment of bias, insensitivity to correlation between attitude and strong engineering practicability.

参考文献

[1] He Y, Xiu J J, Zhang J W, et al. Radar data processing with applications. 2nd ed. Beijing: Publishing House of Electronics Industry Press, 2009: 110-130. (in Chinese) 何友, 修建娟, 张晶炜, 等. 雷达数据处理及应用. 2版. 北京:电子工业出版社, 2009: 110-130.

[2] He Y, Wang G H, Peng Y N, et al. Multisensor information fusion with applications. 2nd ed. Beijing: Publishing House of Electronics Industry Press, 2007: 225-240. (in Chinese) 何友, 王国宏, 彭应宁, 等. 多传感器信息融合及应用. 2版. 北京:电子工业出版社, 2007: 225-240.

[3] Dong Y L, He Y, Wang G H. A novel real-time registration algorithm for radar networking. Journal of Nanjing University of Aeronautics and Astronautics, 2005, 37(3): 330-334. (in Chinese) 董云龙, 何友, 王国宏. 一种新的雷达组网实时误差配准算法. 南京航空航天大学学报, 2005, 37(3): 330-334.

[4] Dong Y L, He Y, Wang G H. Generalized least squares registration algorithm with Earth-Centered Earth-Fixed (ECEF) coordinate system. Acta Aeronautica et Astronautica Sinica, 2006, 27(3): 463-467. (in Chinese) 董云龙, 何友, 王国宏. 基于ECEF的广义最小二乘误差配准技术. 航空学报, 2006, 27(3): 463-467.

[5] Lin X D, Bar-Shalom Y, Kirubarajan T. Exact multisensor dynamic bias estimation with local tracks. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(2): 576-587.

[6] Lin X D, Kirubarajan T, Bar-Shalom Y. Multisensor-multitarget bias estimation for asynchronous sensors. Proceedings of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition XIII, 2004, 5429: 105-116.

[7] Okello N N, Ristic B. Maximum likelihood registration for multiple dissimilar sensors. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 1074-1083.

[8] Ristic B, Okello N N. Sensor registration in the ECEF coordinate system using the MLR algorithm. In Proceedings of the 6th International Conference on Information Fusion (Fusion 2003), Cairns, Australia, 2003, 135-140.

[9] Jesus G H, Besada P J A, Casar C J R. On-line multi-sensor registration for data fusion on airport surface. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 356-370.

[10] Winston Li, Henry Leung. Simultaneous registration and fusion of multiple dissimilar sensors for cooperative driving. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(2): 84-98.

[11] Okello N N, Challa S. Joint sensor registration and track-to-track fusion for distributed trackers. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 808-823.

[12] Li W, Leung H, Zhou Y. Space-time registration of radar and ESM using unscented Kalman filter. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 824-836.

[13] Cui Y Q, Song Q, He Y. A modified exact method-based mobile radar registration algorithm , Journal of Astronautics, 2011, 32(4): 903-910. (in Chinese) 崔亚奇, 宋强, 何友. 基于改进EX的机动雷达误差配准算法. 宇航学报, 2011, 32(4): 903-910.

[14] Kastella K, Yeary B, Zadra T. Bias modeling and estimation for GMTI applications. Proceedings of the 3rd International Conference on Information Fusion. 2000: 7-12.

[15] Xiong W, Pan X D, Peng Y N, et al. Unscented bias estimation technique for maneuvering sensor. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 819-824. (in Chinese) 熊伟, 潘旭东, 彭应宁, 等. 基于不敏变换的动基座传感器偏差估计方法. 航空学报, 2010, 31(4): 819-824.
文章导航

/