固体力学与飞行器总体设计

双向应力状态下IC10高温合金的屈服行为研究

展开
  • 南京航空航天大学 能源与动力学院, 江苏 南京 210016
陈雷 男,博士研究生.主要研究方向: 高温合金塑性行为研究,金属间化合物强度理论研究. Tel: 025-84892206 E-mail: chenl@nuaa.edu.cn
温卫东 男,教授,博士生导师.主要研究方向: 复合材料结构损伤与寿命分析,结构优化设计与可靠性设计,金属间化合物强度理论研究. Tel: 025-84892251 E-mail: gswwd@nuaa.edu.cn

收稿日期: 2011-04-18

  修回日期: 2011-05-10

  网络出版日期: 2012-01-16

Measurement and Analysis of Yield Locus of Superalloy IC10 Under Biaxial Tension

Expand
  • College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2011-04-18

  Revised date: 2011-05-10

  Online published: 2012-01-16

摘要

为了研究Ni3Al基金属间化合物IC10高温合金的屈服行为,对其进行了不同加载路径下的双向拉伸试验.试验采用十字形双向拉伸试验件在Zwick/Roell Z010双向拉伸试验机上进行,得到的最大等效应变为0.02.试验加载方向与材料塑性各向异性主轴重合,采用位移控制方法让两个夹头的加载速率比保持不变,得到不同线性加载路径下的应力-应变曲线.根据单位体积塑性功相等原理获得了IC10合金在双向拉伸应力状态下的屈服轨迹,并与目前常用的几种正交各向异性屈服准则及von Mises屈服准则预测结果进行了对比.结果表明,IC10合金的试验屈服轨迹呈外凸性,以双向等拉线为界的上下部分屈服轨迹不对称,显示出明显的塑性各向异性.各向同性von Mises 屈服准则只包含一个材料常数,无法描述IC10合金的塑性各向异性行为;Hill 二次式屈服准则在双向等拉应力状态附近低估了材料的屈服强度;Logan & Hosford屈服准则在从双向等拉到横向单拉的应力状态下都低估了材料的屈服强度,与试验结果相差较大.Banabic-Balan屈服准则和Barlat (1989) 屈服准则的预测值与试验结果吻合很好,能很好地描述IC10合金在双向应力状态下的屈服行为.

本文引用格式

陈雷, 温卫东, 崔海涛 . 双向应力状态下IC10高温合金的屈服行为研究[J]. 航空学报, 2012 , 33(1) : 77 -84 . DOI: CNKI:11-1929/V.20111107.1044.007

Abstract

Biaxial tensile tests of directionally solidified superalloy IC10 are carried out using cruciform specimens. The specimens are deformed under linear loading path on a Zwick/Roell Z010 biaxial tensile testing machine. The maximum equivalent strain attained is 0.02. The loading directions remain coaxial with the plastic orthotropy throughout every experiment. Contours of plastic work in the biaxial stress space are successfully determined and compared with the yield loci calculated from several existing yield criteria. It is found that the yield locus of superalloy IC10 is asymmetric about the balanced biaxial tension line, which indicates strong plastic anisotropy of the material. Von Mises yield criterion fails to describe the plastic anisotropy of IC10 since it contains only one material constant. Hill's quadratic yield criterion underestimates the measured work contours in the neighborhood of balanced biaxial tension. Logan & Hosford's yield criterion underestimates severely the measured work contours from the balanced biaxial tension to transverse uniaxial tension. Banabic-Balan's yield criterion and Barlat's yield criterion fit the data points well, which indicates it can describe the yielding behavior of superalloy IC10 under biaxial tension with good accuracy.

参考文献

[1] Zhao X H, Huang Z H, Tan Y N, et al. New Ni3Al-based directionally-solidified superalloy IC10. Journal of Aeronautical Materials, 2006, 26(3): 20-24. (in Chinese) 赵希宏, 黄朝晖, 谭永宁, 等. 新型Ni3Al基定向高温合金IC10. 航空材料学报, 2006, 26(3): 20-24.

[2] Zhang H J, Wen W D, Cui H T, et al. Constitutive analysis of alloy IC10 at different temperatures. Acta Aeronautica et Astronuatica Sinica, 2008, 29(2): 499-504. (in Chinese) 张宏建, 温卫东, 崔海涛, 等. 不同温度下IC10合金的本构关系. 航空学报, 2008, 29(2): 499-504.

[3] Zhao X H, Sun Y J, Huang Z H, et al. Creep deformation mechanism of directionally solidified Ni3Al-base superalloy IC10 at 760 ℃. Journal of Materials Engneering, 2009(1): 1-3, 9. (in Chinese) 赵希宏, 孙跃军, 黄朝晖, 等. 定向凝固 Ni3Al基高温金 IC10 的760 ℃ 蠕变机理. 材料工程, 2009(1): 1-3,9.

[4] Wu X M, He S M, Li J P, et al. Effect of EB-PVD thermal barrier coating on mechanical properties of IC10 alloy. Journal of Aeronautical Materials, 2009, 29(6): 77-80. (in Chinese) 吴小梅, 贺世美, 李建平, 等. EB-PVD热障涂层对 IC10合金力学性能的影响. 航空材料学报,2009, 29(6): 77-80.

[5] Hill R, Hecker S S, Stout M G. An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load. International Journal of Solids Structure, 1994, 31(21): 2999-3021.

[6] Kuwabara T, Yoshida K, Narihara K, et al. Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure. International Journal of Plasticity, 2005, 21(1): 101-117.

[7] Zhang Z H, Pang B J, Zhao S S, et al. Experimental research on the yield and strength of magnesium alloy under the complex stress condition. Acta Mechanica Solida Sinica, 1996, 17(2): 163-166. (in Chinese) 张泽华, 庞宝君, 赵树山, 等. 镁合金屈服与强度的试验研究. 固体力学学报,1996,17(2): 163-166.

[8] Kuwabara T, Ikeda S, Kuroda K. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. Journal of Materials Processing Technology, 1998, 80-81: 517-523.

[9] Kuwabara T, van Bael A, Iizuka E. Measurement and analysis of yield locus and work hardening characteristics of steel sheets with different r-values. Acta Materialia, 2002, 50(14): 3717-3729.

[10] Kuwabara T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations. International Journal of Plasticity, 2007, 23(3): 385-419.

[11] Geiger M, Merklein M, Huntter W, et al. Experimental determination of yield loci for magnesium alloy AZ31 under biaxial tensile stress conditions at elevated temperatures. Product Engineering Research Development, 2008, 2(3): 303-310.

[12] Lin S B, Ding J L. Experimental study of the plastic yielding of rolled sheet metals with the cruciform plate specimen. International Journal of Plasticity, 1995, 11(5): 583-604.

[13] Wu X D, Wan M, Zhou X B. The yield loci of anisotropic sheet metals. Materials Science & Technology, 2004, 12(4): 391-393, 397. (in Chinese) 吴向东, 万敏, 周贤宾. 各向异性板料屈服轨迹的研究. 材料科学与工艺, 2004, 12(4): 391-393,397.

[14] Wei L C, Fan J C, Luo R A, et al. Biaxial mechanical test of ecological concrete. Journal of Shanghai University: Natural Science, 2006, 12(6): 647-650,655. (in Chinese). 魏林春, 樊建超, 罗仁安, 等. 绿化生态混凝土双向力学性能实验研究. 上海大学学报: 自然科学版, 2006, 12(6): 647-650, 655.

[15] Demmerlea S, Boehler J P. Optimal design of bi-axial tensile cruciform specimens. Journal of the Mechanics and Physics of Solids, 1993, 41(1): 143-181.

[16] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London: Series A, Mathematical and Physical Science, 1948, 193(1033): 281-297.

[17] Logan R W, Hosford W F. Upper-bound anisotropic yield locus calculations assuming <111>-pencil glide. International Journal of Mechanical Sciences, 1980, 22(7): 419-430.

[18] Banabic D, Balan T, Pohlandt K. Analytical and experimental investigation on anisotropic yield criteria. Geiger M. Advanced Technology of Plasticity 1999, Proceedings of 6th ICTP. 1999: 1739-1764.

[19] Barlat F, Lian J. Plastic behavior and stretchability of sheet metals. Part 1: a yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity, 1989, 5(1): 51-56.
文章导航

/