流体力学与飞行力学

用于碳纤维复合材料的电热除冰技术实验研究

展开
  • 1. 中国科学院 低温工程学重点实验室, 北京 100190;
    2. 中国科学院 研究生院, 北京 100049;
    3. 中国科学院 理化技术研究所, 北京 100190
马莉娅 女,博士研究生.主要研究方向: 制冷及低温技术. Tel: 010-82543482 E-mail: maliya06@mail.ipc.ac.cn
刘立强 男,博士,研究员,博士生导师.主要研究方向: 制冷及低温技术. Tel: 010-62554669 E-mail: lqliu@mail.ipc.ac.cn

收稿日期: 2011-05-09

  修回日期: 2011-05-26

  网络出版日期: 2012-01-16

Experimental Study on Electro-thermal Deicing Technique for Carbon Fiber Composite

Expand
  • 1. Key Laboratory of Cryogenics, Chinese Academy of Sciences, Beijing 100190, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2011-05-09

  Revised date: 2011-05-26

  Online published: 2012-01-16

摘要

针对碳纤维复合材料机翼的电热除冰技术研究现状,提出了采用多层材料结构的电热除冰垫技术方案.该电热除冰垫各层均由具有不同热功能的材料构成,其中部分材料为根据性能需要自行制备得到的.采用有限容积法(FVM)对除冰垫的性能进行了数值模拟,确定了隔热层厚度,验证了加热回路的均匀性.根据所确定的方案制备了电热除冰垫,并利用自行搭建的除冰验证装置对该电热除冰垫的性能进行了实验研究,得到了加热热流密度、来流风速、来流与除冰表面间夹角对除冰性能的影响规律.研究表明,该电热除冰垫具有良好的除冰性能,除冰方案可行.

本文引用格式

马莉娅, 熊联友, 刘立强, 杨娇萍, 杨岩峰 . 用于碳纤维复合材料的电热除冰技术实验研究[J]. 航空学报, 2012 , 33(1) : 54 -61 . DOI: CNKI:11-1929/V.20110916.1604.001

Abstract

Based on recent research of electro-thermal deicing technique for carbon fiber composite airfoil, a multi-material structure is proposed. The deicer pad consistes of multi-materials, each with specific thermal properties. Some of these materials are manufactured in the laboratory based on the property requirements. The finite volume method (FVM) is adopted to simulate the performance of the deicing pad, and the proper thickness of the insulation layer is determined. Through numerical simulation the uniformity of the heating circuit is also verified. According to the scheme an electro-thermal deicer pad is developed, and a deicing validation device is designed and adopted to carry out the experimental study on the performance of the deicer pad. The impact of heat flux, airflow velocity and the angle between the airflow and the deicing surface on the deicing performance is studied. The study shows that the electro-thermal deicer pad so designed is able to provide good deicing performance, and that the proposed deicing scheme is feasible.

参考文献

[1] Shen Z. Application of carbon fiber composites in aircraft structures. High-Tech Fiber & Application, 2010, 35(4): 1-4. (in Chinese) 沈真. 碳纤维复合材料在飞机结构上的应用. 高科技纤维与应用, 2010, 35(4): 1-4.

[2] Wang C J, Dai Y F. Application of carbon fiber composite in aerospace. Development & Innovation of Machinery & Electrical Products, 2010, 23(2): 14-15. (in Chinese) 王春净,代云霏. 碳纤维复合材料在航空领域的应用. 机电产品开发与创新, 2010, 23(2): 14-15.

[3] Liu D J, Chen Y L. Application of new type of composite wing deicing system in boeing 787. Aeronautical Manufacturing Technology, 2009(17): 82-83. (in Chinese) 刘代军,陈亚莉. 用于波音787的新型复合材料机翼除冰系统. 航空制造技术, 2009(17): 82-83.

[4] Al-Khalil K M, Horvath C, Miller D R, et al. Validation of NASA thermal ice protection computer codes. Part 3, the validation of ice. AIAA-1997-0051, 1997.

[5] Miller D R, Wright W B, Al-Khalil K M, et al. Validation of NASA thermal ice protection computer codes. Part 2, LEWICE/thermal. AIAA-1997-0050, 1997.

[6] Hu C X. Research on the comparition of microstructures and properties of some kinds of electrical heating alloys. Lanzhou: School of Material Science and Engineering, Lan Zhou University of Technology, 2009. (in Chinese) 胡春霞. 国内典型电热合金的组织及性能对比研究. 兰州: 兰州理工大学材料科学与工程学院, 2009.

[7] Wang Z D. Application manual for electrical heating alloys. Beijing: Metallurgical Industry Press, 1998: 66-70. (in Chinese) 王振东. 电热合金应用手册. 北京: 冶金工业出版社, 1998: 66-70.

[8] Wright W B, Keith T G, de Witt K J. Numerical simulation of icing, deicing, and shedding. AIAA-1991-0665, 1991.

[9] Wright W B, Keith TG, de Witt K J. Numerical analysis of a thermal deicer. AIAA-1992-0527, 1992.

[10] Al-Khalil K M, Miller D R, Wright W B, et al. Validation of NASA thermal ice protection computer codes. Part 1, program overview. AIAA-1997-0049, 1997.

[11] Zhan P G. A review of icing wind tunnel. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 92-96. (in Chinese) 战培国. 结冰风洞研究综述. 实验流体力学, 2007, 21(3): 92-96.

[12] Xiao C H, Gui Y W, Du Y X, et al. Experimental study on heat transfer characteristics of aircraft electrothermal deicing in icing wind tunnel. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 21-24. (in Chinese) 肖春华,桂业伟,杜雁霞,等. 电热除冰传热特性的结冰风洞实验研究. 实验流体力学, 2010, 24(4): 21-24.

[13] Scavuzzo R J, Chu M L. Structural properties of impact ices accreted on aircraft structures. NASA CR-179580, 1987.

[14] Jaiwon S, Berkowitz B, Chen H H. Prediction of ice shapes and their effect of airfoil drag. Journal of Aircraft, 1994, 31(2): 263-270.

[15] Li Q H. Investigation on test flight of anti-icing and deicing for civil airplane. Flight Test, 1997, 13(2): 11-14.(in Chinese) 李勤红. 民用飞机防冰除冰试飞方法探讨. 飞行试验, 1997, 13(2): 11-14.

[16] Li Q H, Qiao J J. Flight test of simulated ice shape for Y7-200A airplane. Flight Dynamics, 1998, 16(3): 73-77. (in Chinese) 李勤红, 乔建军. Y7-200A飞机模拟冰型飞行试验. 飞行力学, 1998, 16(3): 73-77.

[17] Li Q H, Qiao J J, Chen Z J. Natural icing flight test for Y7-200A airplane. Flight Dynamics, 1999, 17(2): 64-69. (in Chinese) 李勤红,乔建军,陈赠江. Y7-200A飞机自然结冰飞行试验. 飞行力学, 1999, 17(2): 64-69.

[18] Jeck R K. A history and interpretation of aircraft icing intensity definitions and FAA rules for operating in icing conditions. New Jersey: Federal Aviation Administration, 2001.
文章导航

/