基于正癸烷在超临界压力下的热裂解反应机理,建立了考虑正癸烷裂解吸热反应及超临界传热现象的数值计算模型。采用该模型对正癸烷在3.45~11.38 MPa压力条件下的湍流传热过程进行了数值模拟计算研究,得到了详细的温度、速度、裂解转化率、物性及壁面热流密度的变化和分布情况。通过与已有的实验和数值计算结果的对比,对数值模型和计算软件进行了充分的验证。结果表明,本文的数值模型是准确、可靠的。这就为研究碳氢燃料的裂解吸热反应及超临界传热现象提供了一个有效的模拟计算工具。
A numerical model incorporating an n-decane thermal cracking mechanism at supercritical pressures is developed for studying n-decane supercritical heat transfer with endothermic pyrolysis. The model is employed for numerical investigations of the turbulent convective heat transfer of n-decane at supercritical pressures ranging from 3.45 MPa to 11.38 MPa. Detailed variations are obtained of the fluid temperature, velocity, pyrolytic conversion rate, thermophysical properties, and wall heat flux. The calculated results are compared and validated against the available experimental and computational data, showing excellent agreement. A computational tool is thus established for studying the supercritical heat transfer of hydrocarbon fuels with consideration of endothermic pyrolytic reactions.
[1] Zhou P, Crynes B L. Thermolytic reactions of dodecane[J]. Industrial & Engineering Chemistry Research, 1986, 25(2): 508-514.
[2] Zhou P, Hollis O L, Crynes B L. Thermolysis of higher molecular weight straight-chain alkanes (C9-C22)[J]. Industrial & Engineering Chemistry Research, 1987, 26(4): 846-852.
[3] Yu J, Eser S. Thermal decomposition of C10-C14 normal alkanes in near-critical and supercritical regions: product distributions and reaction mechanisms[J]. Industrial & Engineering Chemistry Research, 1997, 36(3): 574-585.
[4] Yu J, Eser S. Kinetics of supercritical-phase thermal decomposition of C10-C14 normal alkanes and their mixtures[J]. Industrial & Engineering Chemistry Research, 1997, 36(3): 585-591.
[5] Ward T A, Ervin J S, Striebich R C, et al. Simulation of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. Journal of Propulsion and Power, 2004, 20(3): 394-402.
[6] Ward T A, Ervin J S, Zabarnick S. Pressure effect on flowing mildly-cracked n-decane[J]. Journal of Propulsion and Power, 2005, 21(2): 344-355.
[7] Zhong F Q, Fan X J, Yu G, et al. Thermal cracking of aviation kerosene for scramjet applications[J]. Science in China Series E: Technological Sciences, 2009, 52(9): 2644-2652.
[8] Launder B E, Spalding D B. Lectures in mathematical models of turbulence[M]. London: Academic Press, 1972.
[9] Ely J F, Hanley H J M. Prediction of transport properties. 1. Viscosity of fluids and mixtures[J]. Industrial & Engineering Chemistry Fundamentals, 1981, 20(4): 323-332.
[10] Ely J F, Hanley H J M. Prediction of transport properties. 2. Thermal conductivity of pure fluids and mixtures[J]. Industrial & Engineering Chemistry Fundamentals, 1983, 22(1): 90-97.
[11] Meng H, Hsiao G C, Yang V, et al. Transport and dynamics of liquid oxygen droplets in supercritical hydrogen streams[J]. Journal of Fluid Mechanics, 2005, 527: 115-139.
[12] Meng H, Yang V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. Journal of Computational Physics, 2003, 189 (1): 277-304.
[13] 华益新, 王亚洲, 孟华. 超临界压力下正庚烷的湍流传热数值研究 [J]. 航空学报, 2010, 31(7): 1324-1330. Hua Yixin, Wang Yazhou, Meng Hua. Numerical study on turbulent convective heat transfer with n-heptane under supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1324-1330. (in Chinese)
[14] 王亚洲, 华益新, 孟华. 超临界压力下低温甲烷的湍流传热数值研究 [J]. 推进技术, 2010, 31(5):606-611. Wang Yazhou, Hua Yixin, Meng Hua. Numerical investigation of turbulent heat transfer of cryogenic propellant methane under supercritical pressures [J]. Journal of Propulsion Technology, 2010, 31(5): 606-611. (in Chinese)
[15] 阮波, 孟华. 裂解吸热反应对乙烷超临界传热的影响//中国工程热物理学会学术会议. 2010. Ruan Bo, Meng Hua. Effects of endothermic cracking on supercritical heat transfer of ethane//National Conference of Chinese Society of Engineering Thermophysics. 2010.