流体力学与飞行力学

基于涡限制法的旋翼气动噪声计算

展开
  • 西北工业大学 翼型叶栅空气动力学国家重点实验室, 陕西 西安 710072
许建华(1984-) 男,博士研究生。主要研究方向:螺旋桨、旋翼绕流数值模拟及桨叶气动设计。 E-mail: jianhua19492002@163.com
宋文萍(1964-) 女,博士,教授,博士生导师。主要研究方向:非定常空气动力学,气动噪声,螺旋桨、旋翼桨叶的气动计算与设计等。 Tel: 029-88491144 E-mail: wpsong@nwpu.edu.cn

收稿日期: 2011-03-18

  修回日期: 2011-05-19

  网络出版日期: 2011-12-08

基金资助

翼型叶栅空气动力学国家重点实验室基金(9140C4201020802)

Prediction of Aeroacoustic Noise for Helicopter Rotors Based on Vorticity Confinement Method

Expand
  • National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2011-03-18

  Revised date: 2011-05-19

  Online published: 2011-12-08

摘要

在直升机旋翼流动的数值模拟中,流动求解精度对旋翼气动噪声的预测有着重要影响。采用中心格式有限体积法求解可压缩Euler方程数值模拟旋翼绕流,并采用基于Ffowcs Williams-Hawkings(FW-H)方程的声类比方法计算旋翼气动噪声。为了抑制中心格式的数值耗散,保持机翼翼尖以及旋翼桨尖的尾涡结构,引入了涡限制法。通过对ONERA M6机翼定常绕流、UH-1H和Caradonna旋翼悬停绕流以及AH-1/OLS旋翼前飞绕流的数值模拟,验证了涡限制法可以有效提高粗网格的尾涡捕捉精度,从而提高旋翼气动噪声的计算精度。结果表明,对于不存在尾迹涡的旋翼无升力状态,涡限制法仍然可以提高旋翼气动噪声的预测精度。此外,进一步研究了涡限制系数对数值计算的稳定性和计算结果的影响,给出了临界涡限制系数随网格量、桨尖马赫数、桨距角和展弦比的取值规律。

本文引用格式

许建华, 宋文萍, 韩忠华 . 基于涡限制法的旋翼气动噪声计算[J]. 航空学报, 2011 , 32(12) : 2204 -2212 . DOI: CNKI:11-1929/V.20110906.1123.002

Abstract

In the numerical simulation of helicopter rotor in hover flight, the prediction of aeroacoustic noise for helicopter rotors is highly dependent on the capturing accuracy of vortical flow structure. In this paper, the compressible Euler equations are solved by using a finite volume method with a central scheme to simulate the flow around helicopter rotors, and the Ffowcs Williams-Hawkings (FW-H) equations are utilized to predict the aeroacoustic noise. In order to reduce the numerical dissipation and preserve the vortical flow structure on the wing tip or rotor blade tip, a vorticity confinement method is introduced to the original Euler solver. The method is more applied to the flow around ONERA M6 wing, UH-1H, Caradonna and AH-1/OLS helicopter rotors. It is shown that the method is more able to preserve the vortical flow structure on coarse grids and the predicted results of aeroacoustic noise for helicopter rotors are all improved. The results show that the predict accuracy is also improved, even for non-lifting flight. The effect of vorticity confinement coefficient on the stability and numerical results is investigated. Finally, the effect of conditions (such as grid size, blade tip Mach number, pitch angle, and aspect ratio) on critical vorticity confinement coefficient is concluded.

参考文献

[1] 韩忠华, 宋文萍, 乔志德. Kirchhoff 方法在旋翼前飞噪声预测中的应用研究[J]. 空气动力学学报, 2004, 22(2): 47-51. Han Zhonghua, Song Wenping, Qiao Zhide. Aeroacoustic noise prediction of helicopter rotor in forward flight using Kirchhoff method[J]. Acta Aerodynamica Sinica, 2004, 22(2): 47-51. (in Chinese)

[2] 招启军, 徐国华, 王适存. 基于CFD/Kirchhoff方法的直升机旋翼高速脉冲噪声模拟分析[J]. 计算物理, 2006, 23(2): 137-143. Zhao Qijun, Xu Guohua, Wang Shicun. A numerical study of high-speed impulsive noise of helicopter rotors with the CFD/Kirchhoff method[J]. Chinese Journal of Computational Physics, 2006, 23(2): 137-143. (in Chinese)

[3] 韩忠华, 宋文萍, 乔志德. 基于FW-H方程的旋翼气动声学计算研究[J]. 航空学报, 2003, 24(5): 400-404. Han Zhonghua, Song Wenping, Qiao Zhide. Aeroacoustic calculation for helicopter rotor in hover and in forward flight based on FW-H equation[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(5): 400-404. (in Chinese)

[4] Uzun A, Hussaini M Y, Streett C L. Towards tip vortex noise prediction by high-order LES on overset grids. AIAA-2005-2865, 2005.

[5] Ilie M. Active flow control technique for the reduction of helicopter BVI noise: a numerical study using LES. AIAA-2010-1411, 2010.

[6] Han Z H, Zhang K S, Song W P, et al. Computational aeroacoustic-noise prediction for helicopter rotor in forward flight. AIAA-2008-46, 2008.

[7] Song W P, Han Z H, Qiao Z D. Prediction of hovering rotor noise based on Reynolds-averaged Navier-Stokes simulation[J]. Journal of Aircraft, 2007, 44(4): 1391-1395.

[8] Steinhoff J. Vorticity confinement: a new technique for computing vortex dominated flows//Frontiers of Computational Fluid Dynamics, 1994: 235-263.

[9] Hu G, Grossman B. A numerical method for vortex confinement in compressible flow. AIAA-2000-0281, 2000.

[10] Hu G C. The development and applications of a numerical method for compressible vorticity confinement in vortex-dominant flows. Virginia: The Virginia Polytechnic Institute and State University, 2001.

[11] Ton T A, Koop A H, Hoeijmakers H W M, et al. Investigation of vorticity confinement in compressible flow. AIAA-2009-3549, 2009.

[12] Hu G, Grossman B. The computation of massively separated flows using compressible vorticity confinement methods. AIAA-2002-0136, 2002.

[13] Lynn N F, Steinhoff J. Large Reynolds number turbulence modeling with vorticity confinement. AIAA-2007-3965, 2007.

[14] Butsuntorn N, Jameson A. Time spectral method for rotorcraft flow with vorticity confinement. AIAA-2008-7340, 2008.

[15] 杨爱明, 乔志德. 悬停旋翼粘性绕流N-S方程数值模拟[J]. 西北工业大学学报, 2000, 18(4): 579-582. Yang Aiming, Qiao Zhide. A new way of simulating the flow field of a lifting rotor in hover[J]. Journal of Northwestern Polytechnical University, 2000, 18(4): 579-582. (in Chinese)

[16] Eriksson L E. Generation of boundary-conforming grids around wind-body configurations using transfinite interpolation. FFA-the Aeronautical Research Institute of Sweden, Brounma, 1982.

[17] 王立群,宋文萍,张茹. 基于动态网格的旋翼流场计算[J]. 计算物理, 2000, 17(4): 367-371. Wang Liqun, Song Wenping, Zhang Ru. The calculation of the flowfield of helicopter rotor based on moving grid [J]. Chinese Journal of Computational Physics, 2000, 17(4): 367-371. (in Chinese)

[18] Ffowcs W J E, Hawkings D L. Sound generated by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society, 1969, A264(1151): 321-342.

[19] Kuntz M. Rotor noise prediction in hover and forward flight using different aeroacoustic method. AIAA-1996-1695, 1996.
文章导航

/