材料工程与机械制造

溅射-电镀微成型制造柔性热膜传感器阵列

展开
  • 1. 西北工业大学 陕西省微/纳米系统重点实验室, 陕西 西安 710072;
    2. 中国空气动力研究与发展中心 高速空气动力研究所, 四川 绵阳 621661
马炳和(1972- ) 男,教授,博士生导师。主要研究方向:航空应用微系统、MEMS设计等。作为国家公派访问学者,曾在德国从事为期一年的欧盟纳米科技第5框架计划项目研究。 Tel: 029-88460353 E-mail: mabh@nwpu.edu.cn 傅博(1984- ) 男,硕士研究生。主要研究方向:柔性MEMS传感器。 E-mail: fu_bo_nwpu@yahoo.com.cn 李建强(1970- ) 男,研究员。主要研究方向:实验空气动力学、风洞试验测控技术。

收稿日期: 2010-12-31

  修回日期: 2011-03-28

  网络出版日期: 2011-11-24

基金资助

国家自然科学基金(50775188)

Flexible Hot-film Sensor Array Fabricated with Sputtering-electroplating Micromachining

Expand
  • 1. Key Laboratory of MEMS/NEMS of Shaanxi Province, Northwestern Polytechnical University, Xi'an 710072, China;
    2. High Speed Aerodynamics Institute, China Aerodynamics Research & Development Center, Mianyang 621661, China

Received date: 2010-12-31

  Revised date: 2011-03-28

  Online published: 2011-11-24

摘要

为了实现流场壁面剪应力等动态定点分布测量,提出了一种新的柔性热膜传感器阵列结构,并介绍了其制作工艺。旋涂并升温固化制备聚酰亚胺柔性薄膜衬底,在衬底上溅射沉积金属镍膜,并用剥离工艺成型热敏电阻元件阵列及其引线区底膜。然后在引线区底膜上电镀沉积铜膜,再剥离成型铜引线。通过电镀可以经济快速地获得较厚的引线铜膜,使得引线电阻远小于热敏元件阻值,有利于减小引线的热敏干扰。经热敏性能测试,其电阻温度系数达到3.6×10-3/℃以上,线性度优于0.7%,并且热敏响应速度极快;结合风洞试验验证了该传感器测量壁面剪应力的有效性,并且获得了较好的测量重复性。该传感器阵列结构简单,工艺成本和复杂度较低,提高了用于非平面应用时柔性热膜元件与引线间的连接可靠性,为高曲率表面的非破坏性动态流场参数测量提供了新手段。

本文引用格式

马炳和, 傅博, 李建强, 邓进军, 董拴成 . 溅射-电镀微成型制造柔性热膜传感器阵列[J]. 航空学报, 2011 , 32(11) : 2147 -2152 . DOI: CNKI:11-1929/V.20110712.0904.001

Abstract

In order to measure dynamically the local temperature or wall shear stress of a flow, a new structure of flexible hot-film sensor array and its fabrication process are proposed. The thermal sensing material, nickel, is sputtered on a polymide flexible substrate, and then patterns to form both the thermal resistor array and the leads' sublayer, on which copper is electroplated and lift-off patterned to form the metal leads. Electroplating can realize economically higher thickness of the lead film than does sputtering to keep the lead resistance small and minimize its influence on thermal sensing. High temperature coefficient of resistance (TCR) is obtained over 3.6×10-3/℃ with nonlinearity under 0.7%. Wind tunnel experiments show that the developed sensor can measure wall shear stress with high repeatability. This flexible sensor array possesses reliable connections between the flexible thermal resistors and leads, and can be used to measure the dynamic distribution of flow parameters on non-planar surfaces.

参考文献

[1] Xiang D, Yang Y B, Xu Y, et al. MEMS-based shear-stress sensor for skin-friction measurements// Instrumentation and Measurement Technology Conference (I2MTC) 2010 IEEE. 2010: 656-661.

[2] Jiang F K, Lee G B, Tai Y C, et al. A flexible micromachine-based shear-stress sensor array and its application to separation-point detection[J]. Sensors and Actuators, 2000, 79(3): 194-203.

[3] Shi S D, Chen D P, Bai H L, et al. A novel micro thermal shear stress sensor with a cavity underneath//Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006: 466-469.

[4] Yan W P, Li H N, Kuang Y B, et al. Nickel membrane temperature sensor in micro-flow measurement[J]. Journal of Alloys and Compounds, 2008, 449(1-2): 210-213.

[5] Liu C, Huang J B, Zhu Z J, et al. A micromachined flow shear stress sensor based on thermal transfer principles[J]. Journal of Microelectromechanical Systems, 1999, 8(1): 90-99.

[6] Lee G B, Huang F C, Lee C Y, et al. A new fabrication process for a flexible skin with temperature sensor array and its applications[J]. Acta Mechanica Sinica, 2004, 20(2): 140-145.

[7] Lee C Y, Wu G W, Hsieh W J. Fabrication of micro sensors on a flexible substrate[J]. Sensors and Actuators A: Physical, 2008, 147(1): 173-176.

[8] 肖素艳, 车录锋, 李昕欣, 等. 基于柔性MEMS皮肤技术温度传感器阵列的研究[J]. 光学精密工程, 2005, 13(6): 674-680. Xiao Suyan, Che Lufeng, Li Xinxin, et al. A temperature sensor array based on flexible MEMS skin technology [J]. Optics and Precision Engineering, 2005, 13(6): 674-680. (in Chinese)

[9] Xiao S Y, Che L F, Li X X, et al. A novel fabrication process of MEMS devices on polyimide flexible substrates[J]. Microelectronic Engineering, 2008, 85(2): 452-457.

[10] 马炳和, 赵建国, 邓进军, 等. 全柔性热膜微传感器阵列制造工艺及性能优化[J]. 光学精密工程, 2009, 17(8): 1971-1977. Ma Binghe, Zhao Jianguo, Deng Jinjun, et al. Fabrication of flexible hot film sensor array and its optimization[J]. Optics and Precision Engineering, 2009, 17(8): 1971-1977. (in Chinese)

[11] Buder U, Petz R, Kittel M, et al. AeroMEMS polyimide based wall double hot-wire sensors flow separation detection[J]. Sensors and Actuators A: Physical, 2008, 142(1): 130-137.

[12] Ngo L, Kupke W, Seidel H, et al. Simulation and experimental results of a hot-film anemometer array on a flexible substrate//CANEUS 2004--Conference on Micro-Nano-Technologies. 2004.

[13] Schmid U, Ababneh A, Seidel H, et al. Characterization of aluminium nitride and aluminium oxide thin films sputter-deposited on organic substrates[J]. Microsystem Technologies, 2008, 14(4-5): 483-490.

[14] Berns A, Obermeier E, Wang X, et al. AeroMEMS sensor with integrated pressure and hot-wire sensor for high-frequency transition detection//Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. 2009.

[15] 张以忱, 巴德纯, 刘希东, 等. 温度传感功能薄膜技术[J]. 真空技术与科学, 2003, 23(5): 334-339, 346. Zhang Yichen, Ba Dechun, Liu Xidong, et al. Latest progress in development of thin film temperature sensors[J]. Vacuum Science and Technology, 2003, 23(5): 334-339, 346. (in Chinese)
文章导航

/