惯性测量单元(IMU)是位置姿态系统(POS)的核心部分,IMU的精度很大程度上决定着POS精度。由于高精度光纤陀螺(FOG)的光纤线圈对磁场敏感,基于高精度FOG的IMU精度会受磁场影响而降低。本文研究了FOG磁敏感性机理,通过实验得出高精度光纤IMU对磁场敏感的结论。采用电磁场有限元分析软件Ansoft Maxwell研究了磁屏蔽体采用不同材料、不同厚度时的磁屏蔽效能(SE),并进行了IMU磁屏蔽结构设计。通过亥姆霍兹线圈测试得到的磁屏蔽体实际屏蔽效能最高为48.20 dB,与有限元分析结果基本一致。转台环境测试表明:屏蔽体使FOG漂移减小到9%以上;亥姆霍兹线圈测试表明:通过磁屏蔽使FOG零偏磁敏感度衰减2~21 dB,漂移磁敏感度衰减9~23 dB,对提高光纤IMU测试和应用精度以及机载环境适应性有重要意义。
The inertial measurement unit (IMU) is the core of a position and orientation system (POS), whose accuracy has a crucial impact on POS accuracy. But the IMU accuracy based on high precision fiber-optic gyroscope (FOG) is degraded because of the sensitivity of the FOG fiber coil to the magnetic field. This paper studied the magnetic sensitivity mechanism of the FOG, and through experimental study reached the conclusion that the IMU based on a high precision FOG is also sensitive to the magnetic field. An IMU shielding is designed, and its shielding effectiveness (SE) is analyzed by electromagnetic field finite element analysis software Ansoft Maxwell for different materials with different thicknesses. The best SE of 48.20 dB is achieved with a Helmholtz coil test, which is consistent with the results of the finite element analysis. The turn table test shows that a reduction of over 9% of the FOG drift is achieved with the enclosure. The Helmholtz coil test with magnetic shielding demonstrates that the bias and drift magnetic sensitivity of the FOG are decreased by 2-21 dB and 9-23 dB respectively. The shielding is valuable for improving the IMU test and application precision and its adaptability to airborne environment.
[1] 宫晓琳, 房建成. 模型预测滤波在机载SAR运动补偿POS系统中的应用[J]. 航空学报, 2008, 29(1): 102-109. Gong Xiaolin, Fang Jiancheng. Application of model predictive filtering method in POS for airborne SAR motion compensation system[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 102-109. (in Chinese)
[2] Li J T, Fang J C. Design and experiment study of integrated navigation computer based on FPGA and DSP//Proceedings of the 2010 International Conference on Measuring Technology and Mechatronics Automation. Washington, DC: IEEE Computer Society Press, 2010, 1: 931-937.
[3] 房建成, 李金涛, 郦吉臣, 等. 一种惯性测量装置: 中国, CN200810114925. 3. 2009-01-21. Fang Jiancheng, Li Jintao, Li Jichen, et al. A kind of inertial measurement equipment: China, CN200810114925. 3. 2009-01-21. (in Chinese)
[4] 张桂才. 光纤陀螺原理与技术[M]. 北京:国防工业出版社, 2008: 121-154. Zhang Guicai. The principles and technologies of fiber-optic gyroscope[M]. Beijing: National Defense Industry Press, 2008: 121-154. (in Chinese)
[5] Blake J. Magnetic field sensitivity of depolarized fiber optic gyros[J]. Fiber Optic and Laser Sensors, 1990, 1367: 81-86.
[6] 张登伟, 牟旭东, 舒晓武. 去偏光纤陀螺轴向磁场问题的理论研究[J]. 光子学报,2005, 34(10): 1561-1564. Zhang Dengwei, Mou Xudong, Shu Xiaowu. Theory study on axial magnetic field acting on fiber-optic depolarized gyro[J]. Acta Photonica Sinica,2005, 34(10): 1561-1564. (in Chinese)
[7] 孟照魁, 张春熹, 杨远洪, 等. 光纤环绕制过程中的张力分析[J]. 北京航空航天大学学报, 2005, 31(3): 307-310. Meng Zhaokui, Zhang Chunxi, Yang Yuanhong, et al. Analysis of stress in winding fiber-optic ring[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3): 307-310. (in Chinese)
[8] Olson M A, Lange C H. Magnetic compensators for fiber optic gyroscopes: USA, US7298491. 2007-11-20.
[9] Wen H, Terrel M A, Kim H K, et al. Measurements of the birefringence and verdet constant in an air-core fiber[J]. Journal of Lightwave Technology, 2009, 27(15): 3194-3201.
[10] Mcewen M B, Vaught J A, Leonard J R. Magnetic shield for optical gyroscopes: USA, US6627810. 2003-09-30.
[11] 刘元正,王维科, 陶伯良, 等. 塞曼激光陀螺磁屏蔽设计与实现[J]. 应用光学, 2010, 31(5): 814-818. Liu Yuanzheng, Wang Weike, Tao Boliang, et al. Magnetic shield design and realization for Zeeman laser gyroscope[J].Journal of Applied Optics, 2010, 31(5): 814-818. (in Chinese)
[12] 金靖, 宋凝芳, 李立京. 干涉型光纤陀螺温度漂移建模与实时补偿[J]. 航空学报, 2007, 28(6): 1449-1454. Jin Jing, Song Ningfang, Li Lijing. Temperature drift modeling and real-time compensation of interferometric fiber optic gyroscope[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1449-1454. (in Chinese)
[13] 宋凝芳, 张春熹, 李立京, 等. 数字闭环光纤陀螺振动误差分析[J]. 北京航空航天大学学报, 2004, 30(8): 702-704. Song Ningfang, Zhang Chunxi, Li Lijing, et al. Analysis of vibration error in digital closed-loop fiber optic gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(8): 702-704. (in Chinese)
[14] 王夏霄, 宋凝芳, 张春熹, 等. 光纤陀螺磁敏感性的试验研究[J]. 北京航空航天大学学报, 2005, 31(10): 1116-1120. Wang Xiaxiao, Song Ningfang, Zhang Chunxi, et al. Experiment study on magnet sensitivity of fiber optic gyro[J].Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(10): 1116-1120. (in Chinese)
[15] 赵万章, 吴琼, 刘江涛. 屏蔽效能的工程计算[J]. 长春工业大学学报: 自然科学版, 2005, 26(4): 335-339. Zhao Wanzhang, Wu Qiong, Liu Jiangtao. Engineering arithmetic of shielding efficiency[J]. Journal of Changchun University of Technology: Natural Science Edition, 2005, 26(4): 335-339. (in Chinese)