电子与自动控制

考虑导弹自动驾驶仪二阶动态特性的三维导引律

展开
  • 1. 哈尔滨工业大学 控制科学与工程系, 黑龙江 哈尔滨 150001;
    2. 沈阳航空航天大学 电子信息工程学院, 辽宁 沈阳 110136
曲萍萍(1979- ) 女,博士研究生,讲师。主要研究方向:飞行器制导与控制。 Tel: 0451-86413411-8507 E-mail: qupingping_79@163.com 周荻(1969- ) 男,博士,教授,博士生导师。主要研究方向:飞行器制导与控制,非线性控制,非线性滤波。 Tel: 0451-86413411-8507 E-mail: zhoud@hit.edu.cn

收稿日期: 2011-03-22

  修回日期: 2011-04-11

  网络出版日期: 2011-11-24

基金资助

教育部新世纪优秀人才支持计划(NCET-08-0153);国家自然科学基金(61174203);机械制造系统工程国家重点实验室开放基金(2009SY01)

Three-dimensional Guidance Law Accounting for Second-order Dynamics of Missile Autopilot

Expand
  • 1. Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
    2. School of Electronics and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China

Received date: 2011-03-22

  Revised date: 2011-04-11

  Online published: 2011-11-24

摘要

基于三维(3D)空间坐标系下目标-导弹相对运动方程,考虑导弹自动驾驶仪的二阶动态特性,应用动态面控制方法设计了一种新的三维空间导引律。在设计过程中,通过引入一阶低通滤波器,使得导引律的最终表达式中不含有视线角速率的高阶导数,更易于实际应用。该导引律有效地克服了导弹控制系统的动态延迟对制导精度的影响。将该导引律与未考虑导弹自动驾驶仪动态特性的自适应滑模导引(ASMG)律和考虑导弹自动驾驶仪一阶动态特性的三维非线性导引律相比较,对目标非机动、阶跃机动和正弦机动3种情况进行仿真。仿真结果表明,在目标机动加速度快速变化,而且导弹自动驾驶仪存在较大滞后的情况下,该导引律具有更高的制导精度。

本文引用格式

曲萍萍, 周荻 . 考虑导弹自动驾驶仪二阶动态特性的三维导引律[J]. 航空学报, 2011 , 32(11) : 2096 -2105 . DOI: CNKI:11-1929/V.20110615.1322.004

Abstract

A new three-dimensional (3D) guidance law is designed using the dynamic surface control method in this paper which is based on the target-missile dynamics in 3D coordinates and the second-order dynamics of the missile autopilot. Certain first-order low-pass filters are introduced into the designing process to avoid the occurrence of high-order derivatives of the line of sight angular rate in the expression of the guidance law, which makes it easy to implement in practical applications. The proposed guidance law is effective in compensating for the adverse influence of autopilot lag on guidance accuracy. In simulations of intercepting non maneuvering targets, targets with step acceleration, and targets with sinusoidal acceleration respectively, the guidance law is compared with the adaptive sliding mode guidance (ASMG) law, which is designed without accounting for the dynamics of the missile autopilot, and the 3D nonlinear guidance law, which is designed accounting for the first-order dynamics of missile autopilot. Simulation results show that the guidance law still ensures an accurate guidance result, even if the target escapes in a great and fast maneuver and the autopilot has a relatively large lag.

参考文献

[1] Tyan F. Unified approach to missile guidance laws: a 3D extension[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1178-1199.

[2] 彭双春, 潘亮, 韩大鹏, 等. 一种新型三维制导律设计的非线性方法[J]. 航空学报, 2010, 31(10): 2018-2025. Peng Shuangchun, Pan Liang, Han Dapeng, et al. A new 3D guidance law based on nonlinear method[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 2018-2025. (in Chinese)

[3] 佘文学, 周凤岐. 三维非线性变结构寻的制导律[J]. 宇航学报, 2004, 25(6): 681-685. She Wenxue, Zhou Fengqi. High precision 3-D nonlinear variable structure guidance law for homing missile[J]. Journal of Astronautics, 2004, 25(6): 681-685. (in Chinese)

[4] Yang C D, Yang C C. Analytical solution of 3D true proportional navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1509-1522.

[5] Song S H, Ha I J. A Lyapunov-like approach to performance analysis of 3-dimensional pure PNG laws[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 238-248.

[6] 武立军. 三维末制导律的鲁棒动态逆设计方法研究[J]. 系统工程与电子技术, 2007, 29(8): 1331-1333. Wu Lijun. Designing method of robust dynamic inversion for 3-D terminal guidance law[J]. Systems Engineering and Electronics, 2007, 29(8): 1331-1333. (in Chinese)

[7] 孙胜, 周荻. 考虑导弹自动驾驶仪动特性的三维非线性导引律[J]. 宇航学报, 2009, 30(3): 1052-1056. Sun Sheng, Zhou Di. Three-dimensional nonlinear guidance law with consideration of autopilot dynamics[J]. Journal of Astronautics, 2009, 30(3): 1052-1056. (in Chinese)

[8] No T S, Cochran J E, Kim E G. Bank-to-turn guidance law using Lyapunov function and nonzero effort miss[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 255-260.

[9] Kim K S, Kim Y. Design of generalized conceptual guidance law using aim angle[J]. Control Engineering Practice, 2004, 12(3): 291-298.

[10] Chen R H, Speyer J L, Lianos D. Optimal intercept missile guidance strategies with autopilot lag[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1264-1272.

[11] Rusnak I, Meir L. Modern guidance law for high-order autopilot[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(5): 1056-1058.

[12] Ha I J, Chong S. Design of a CLOS guidance law via feedback linearization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 51-63.

[13] 周荻. 寻的导弹新型导引规律[M]. 北京: 国防工业出版社, 2002: 2-26. Zhou Di. New guidance laws for homing missile[M]. Beijing: National Defense Industry Press, 2002: 2-26. (in Chinese)

[14] Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.

[15] Swaroop D, Gerdes J C, Yip P P, et al. Dynamic surface control of nonlinear systems//Proceedings of the American Control Conference. 1997: 3028-3034.

[16] Yoo S J, Park J B, Choi Y H. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2006, 36(6): 1342-1355.

[17] Xiong G L, Xie Z W, Huang J B, et al. Dynamic surface control-backstepping based impedance control for 5-DOF flexible joint robots[J]. Journal of Central South University of Technology, 2010, 17(4): 807-815.
文章导航

/