电子与自动控制

基于梯度方向二值模式特征的飞机翼尖跟踪技术

展开
  • 1. 南京航空航天大学 民航学院, 江苏 南京 210016;
    2. 南京航空航天大学 飞行模拟与先进培训工程技术研究中心, 江苏 南京 210016
孙瑾(1978- ) 女,博士,讲师。主要研究方向:机场场面监控,虚拟现实系统应用等。 Tel: 025-84890755 E-mail: sunjinly@nuaa.edu.cn 顾宏斌(1956- ) 男,博士,教授,博士生导师。主要研究方向:飞行模拟和飞行安全、虚拟现实系统应用等。 Tel: 025-84893501 E-mail: ghb@nuaa.edu.cn 侯建波(1987- ) 男,硕士研究生。主要研究方向:航空器运行品质与分析。 Tel: 025-84890755 E-mail: jianbo87@163.com

收稿日期: 2011-01-25

  修回日期: 2011-03-22

  网络出版日期: 2011-11-24

基金资助

国家自然科学基金 (60776812);国家"863"计划(2007AA01Z306);中国民用航空总局科技项目(MHRD0723);南京航空航天大学青年科技创新基金(NS2010175)

Aircraft Wingtip Tracking Algorithm Based on Oriented Gradient Local Binary Pattern

Expand
  • 1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Engineering Technology Research Center of Flight Simulation & Advanced Training, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2011-01-25

  Revised date: 2011-03-22

  Online published: 2011-11-24

摘要

研究基于视频图像分析与定位的飞机翼尖跟踪技术,为飞机地面移动提供安全保障。现有图像特征进行翼尖跟踪经常失效且计算效率低下,本文结合纹理和轮廓信息,提出以梯度方向二值模式(OG_LBP)为特征的粒子滤波跟踪算法,降低特征维数的同时建立局部和全局的翼尖特征直方图描述,提高识别效果。同时,该算法在粒子滤波基本框架之下,结合当前观测信息,通过粒子传播半径的自适应更新建立系统状态模型,降低粒子集的衰减程度,提高算法效率。实验结果表明,该算法有效降低计算复杂度,在各种复杂背景下均可实现各种翼尖实时、有效的跟踪,并更具鲁棒性。

本文引用格式

孙瑾, 顾宏斌, 侯建波, . 基于梯度方向二值模式特征的飞机翼尖跟踪技术[J]. 航空学报, 2011 , 32(11) : 2062 -2072 . DOI: CNKI:11-1929/V.20110517.1516.005

Abstract

In order to provide security assurance for aircraft ground movement, wingtip tracking is proposed which is based on video image processing and analysis techniques. Due to the poor performance of the existing tracking features for a wingtip, this paper presents a new tracking algorithm within a particle filtering tracking framework which adopts oriented gradient local binary pattern(OG_LBP) descriptors to integrate texture and contour information. The OG_LBP descriptor not only reduces the histogram dimensionality but also expresses both local and holistic features of the wingtip image to enhance the discrimination. In addition, via combining the observation information of the current frame, the new tracking algorithm establishes a model of the target state. Furthermore, the radius of particle propagation is updated adaptively by the similarity between the target model and each hypothesis of the particle, which can overcome the degeneracy problem in particle filtering and result in low computational cost. Experimental results show that the proposed algorithm can achieve an accurate and robust tracking performance for different wingtips with complex background in real-time.

参考文献

[1] 田穆. FAA继续推进机场地面安全技术[J]. 国际航空, 2006(3): 31-32. Tian Mu. FAA aims to improve runway safety[J]. International Aviation, 2006(3): 31-32. (in Chinese)

[2] 郭晓静. 多传感器数据融合在飞机地面防撞中的应用[J]. 测控技术, 2008, 27(6): 15-17. Guo Xiaojing. Multi-sensor data fusion application in aircraft ground collision avoidance[J]. Measurement & Control Technology, 2008, 27(6): 15-17. (in Chinese)

[3] 万卫兵, 霍宏, 赵宇民. 智能视频监控中目标检测与识别[M]. 上海: 上海交通大学出版社, 2010. Wan Weibing, Huo Hong, Zhao Yuming. Object detection and recognition in intelligent visual surveillance. Shanghai: Shanghai Jiao Tong University Press, 2010. (in Chinese)

[4] 李培华. 一种新颖的基于颜色信息的粒子滤波器跟踪算法[J] .计算机学报, 2009, 32(12): 2455-2463. Li Peihua. A novel color based particle filter algorithm for object tracking[J]. Chinese Journal of Computer, 2009, 32(12): 2455-2463. (in Chinese)

[5] Katja N E, Esther K, Luc V G. An adaptive color-based particle filter[J]. Image and Vision Computing, 2002, 21(1): 99-110.

[6] Pérez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking//Proceedings of the European Conference on Computer Vision. 2002:661-675.

[7] Isard M, Blake A. CONDENSATION—conditional density propagation for visual tracking [J]. International Journal on Computer Vision, 1998, 29(1): 5-28.

[8] 庄严, 战洪斌, 王伟, 等. 基于加权颜色直方图和粒子滤波的彩色物体跟踪[J]. 控制与决策, 2006, 21(8): 867-872. Zhuang Yan, Zhan Hongbin, Wang Wei, et al. Weighted color histogram based particle filter for visual target tracking[J]. Control and Decision, 2006, 21(8): 867-872. (in Chinese)

[9] 卢晓鹏, 殷学民, 邹谋炎. 一种基于颜色分布的混合视频跟踪方法[J]. 电子与信息学报, 2008, 30(2): 259-262. Lu Xiaopeng, Yin Xuemin, Zou Mouyan. A hybrid algorithm of object tracking based on color distribution[J]. Journal of Electronics & Information Technology, 2008, 30(2): 259-262. (in Chinese)

[10] Yogesh R, Namrata V, Allen T, et al. Tracking deforming objects using particle filtering for geometric active contours[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8):1470-1475.

[11] 牛长锋, 陈登峰, 刘玉树. 基于SIFT特征和粒子滤波的目标跟踪方法[J]. 机器人, 2010, 32(2): 241-247. Niu Changfeng, Chen Dengfeng, Liu Yushu. Tacking object based on SIFT features and particle filter[J]. Robot, 2010, 32(2): 241-247. (in Chinese)

[12] 郑永斌, 黄新生, 丰松江. SIFT和旋转不变LBP相结合的图像匹配算法[J]. 计算机辅助设计与图形学学报, 2010, 22(2): 286-292. Zheng Yongbin, Huang Xinsheng, Feng Songjiang. An image matching algorithm based on combination of SIFT and the rotation invariant LBP[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(2): 286-292. (in Chinese)

[13] Shen C, Anton V d H, Dick A. Probabilistic multiple cue integration for particle filter based tracking//Proceedings of Digital Image Computing: Techniques and Applications. 2003, 1: 399-408.

[14] 李远征, 卢朝阳, 高全学, 等. 基于多特征融合的均值迁移粒子滤波跟踪算法[J].电子与信息学报, 2010, 32(2): 411-415. Li Yuanzheng, Lu Chaoyang, Gao Quanxue, et al. Particle filter and mean shift tracking method based on multi-feature fusion[J]. Journal of Electronics & Information Technology, 2010, 32(2): 411-415. (in Chinese)

[15] 高建坡, 王煜坚, 杨浩, 等. 以颜色和形状直方图为线索的粒子滤波人脸跟踪[J]. 中国图象图形学报, 2007, 12(3): 466-473. Gao Jianpo, Wang Yujian, Yang Hao, et al. Particle filter face tracking using color and shape histogram as clues[J]. Journal of Image and Graphics, 2007, 12(3): 466-473. (in Chinese)

[16] 高涛, 何明一, 戴玉超, 等. 多级LBP直方图序列特征的人脸识别[J]. 中国图象图形学报, 2009, 14(2): 202-207. Gao Tao, He Mingyi, Dai Yuchao, et al. Face recognition using multi-level histogram sequence local binary pattern[J]. Journal of Image and Graphics, 2009, 14(2): 202-207. (in Chinese)

[17] Timo O, Matti P, David H. A comparative study of texture measures with classification based on featured distributions [J]. Pattern Recognition, 1996, 29(1):51-59.

[18] Timo O, Matti P, Top M. Multiresolution gray scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.

[19] Navneet D, Bill T. Histograms of oriented gradients for human detection//Proceedings of Conference on Computer Vision and Pattern Recognition. 2005: 886-893.

[20] 孙瑾, 顾宏斌, 郑吉平. 一种基于梯度方向信息的运动目标检测算法[J]. 中国图象图形学报, 2008, 13(3): 571-579. Sun Jin, Gu Hongbin, Zheng Jiping. A gradient direction based moving object detection[J]. Journal of Image and Graphics, 2008, 13(3): 571-579. (in Chinese)

[21] Marko H, Matti P, Cordelia S. Description of interest regions with center-symmetric local binary patterns [J]. Pattern Recognition, 2009, 42(3): 58-69.

[22] 吴成茂, 田小平, 谭铁牛. 二维Otsu阈值法的快速迭代算法[J]. 模式识别与人工智能, 2008, 21(6): 746-757. Wu Chengmao, Tian Xiaoping, Tan Tieniu. Fast iterative algorithm for two-dimensional otsu thresholding method[J]. Pattern Recognition and Artificial Intelligence, 2008, 21(6): 746-757. (in Chinese)

[23] Sanjeev A, Simon M, Neil G, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.

[24] 胡士强, 敬忠良. 粒子滤波原理及其应用[M]. 北京:科学出版社, 2010:21-27. Hu Shiqiang, Jin Zhongliang. The theory and application of particle filter[M]. Beijing: Science Press, 2010:21-27. (in Chinese)

[25] 朱志宇. 粒子滤波算法及其应用原理[M]. 北京: 科学出版社, 2010. Zhu Zhiyu. Particle filtering and its application[M]. Beijing: Science Press, 2010. (in Chinese)

[26] 姚剑敏. 粒子滤波跟踪方法研究. 北京: 中国科学院研究生院, 2004. Yao Jianmin. Study on particle filtering based visual tracking method. Beijing: Graduate University of Chinese Academy of Science, 2004. (in Chinese)

[27] 胡昭华. 基于粒子滤波的视频目标跟踪技术研究. 南京: 南京理工大学, 2008: 16-19. Hu Shaohua. Visual target tracking based on particle filter[M]. Nanjing: Nanjing University of Science & Technology, 2008: 16-19. (in Chinese)

[28] 魏海坤. 神经网络结构设计的理论与方法[M]. 北京:国防工业出版社, 2005: 8-11. Wei Haikun. Theory and method of neural network structure design[M]. Beijing: National Defense Industry Press, 2005: 8-11. (in Chinese)
文章导航

/