固体力学与飞行器总体设计

计及弯折波的舰载机拦阻过程控制

展开
  • 南京航空航天大学 振动工程研究所, 机械结构强度与振动国家重点实验室, 江苏 南京 210016
张萍(1986- ) 女,硕士研究生。主要研究方向:非线性动力学与控制。 Tel: 025-84891672 Email: crystal_zp@126.com 金栋平(1964- ) 男,博士,教授,博士生导师。主要研究方向:动力学与控制。 Tel: 025-84890251 E-mail: jindp@nuaa.edu.cn

收稿日期: 2011-03-07

  修回日期: 2011-04-07

  网络出版日期: 2011-11-24

基金资助

长江学者和创新团队发展计划(IRT0968)

Control of Arresting Process for Carrier Aircraft Considering Kink-wave

Expand
  • State Key Laboratory of Strength and Vibration for Mechanical Structures, Institute of Vibration Engineering Research, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2011-03-07

  Revised date: 2011-04-07

  Online published: 2011-11-24

摘要

为验证拦阻索中应力的传播对拦阻过程的影响,研究了计及弯折波的舰载机拦阻过程的比例-积分-微分(PID)控制问题。先以液压阻尼力作为拦阻过程的控制输入建立了无弯折波的理想拦阻过程动力学模型,再依据拦阻过程中需要保持拦阻钩载为常值的要求,借助最优控制方法获得了一组理想轨迹。然后详细分析了拦阻索中弯折波在甲板滑轮与钩-索啮合点间的传播特征,获得了离散的弯折波模型,并将之应用于拦阻过程的PID跟踪控制中。结果表明,弯折波的计入,会使拦阻钩载在拦阻初期出现波动效应,这一现象与美国军用标准MIL-STD-2066中实验得到的钩载随行程变化规律一致。

本文引用格式

张萍, 金栋平 . 计及弯折波的舰载机拦阻过程控制[J]. 航空学报, 2011 , 32(11) : 2008 -2015 . DOI: CNKI:11-1929/V.20110511.1349.003

Abstract

To validate the influence of the stress wave propagation on the arresting process, this paper presents a study of the proportion-integral-differential (PID) control of the arresting process during carrier aircraft landing with consideration of the kink-wave that travels along the arresting cable. Taking the hydraulic damping force as a control input for the arresting process, a dynamic model for an ideal arrestment without the kink-wave is first established. Based on the constant hook load condition during the arresting process, a set of ideal trajectories is obtained with an optimal control method. Afterwards, the propagation characteristics of the kink-wave that travels between the deck sheave and the hook are analyzed. Then a discrete kink-wave model is obtained and applied to the PID control of the arresting process in tracking an ideal trajectory. The result shows that when the kink-wave is taken into consideration, the hook load will vibrate at the initial period of the arresting process, which is consistent with the experimental result of American military standard MIL-STD-2066.

参考文献

[1] Ringleb F O. Cable dynamics. Lakehurst, NJ, USA: Naval Air Engineering Facility Engineering Department, 1956.

[2] Gibson P T, Cress H A. Analytical study of aircraft arresting gear cable design. Columbus, OH, USA: Battelle Memorial Institute Columbus Laboratory, 1965.

[3] Gibson P T, Alexander G H, Cress H A. Validation of design theory for aircraft arresting-gear cable. Columbus, OH, USA: Battelle Memorial Institute Columbus Laboratory, 1968.

[4] George M L. Development of a mathematical performance prediction model for rotary-hydraulic-type arresting gears. AD893157, 1972.

[5] Jones L W. Development of curves for estimating aircraft arresting hook loads. ADA119551, 1982.

[6] 宋锦春, 张志伟, 曹淑华, 等. 飞机拦阻器的液压系统性能及仿真[J]. 东北大学学报, 2002, 23(10): 992-995. Song Jinchun, Zhang Zhiwei, Cao Shuhua, et al. Hydraulic system design and performance simulation of aircraft arresting system[J]. Journal of Northeastern University, 2002, 23(10): 992-995. (in Chinese)

[7] 宋锦春, 王艳, 张志伟, 等. 飞机拦阻系统电液比例控制研究[J]. 航空学报, 2005, 26(4): 520-523. Song Jinchun, Wang Yan, Zhang Zhiwei, et al. Study on the electro-hydraulic proportional controlled aircraft arresting system[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 520-523. (in Chinese)

[8] 吴娟. 飞机拦阻系统分析与控制研究. 西安: 西北工业大学自动化学院, 2003. Wu Juan. Analysis and control study of aircraft arresting system. Xi'an: School of Automation, Northwestern Polytechnical University, 2003. (in Chinese)

[9] 张鑫. 舰载机拦阻着舰动力学分析及仿真. 西安: 西北工业大学航空学院, 2007. Zhang Xin. Dynamic analysis and simulation of carrier aircraft arrested landing. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 2007. (in Chinese)

[10] 柳刚. 舰载飞机着舰拦阻钩碰撞及拦阻动力学研究. 南京: 南京航空航天大学航空宇航学院, 2010. Liu Gang. Investigation on arresting dynamics for carrier-based aircraft with consideration of arresting hook bounce. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)

[11] 张澎森, 金栋平. 飞机拦阻过程的非线性最优控制[J]. 航空学报, 2009, 30(5): 849-854. Zhang Shusen, Jin Dongping. Nonlinear optimal control of aircraft arresting process[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 849-854. (in Chinese)

[12] 周建斌, 金栋平, 张澎森. 舰载机拦阻系统动力学建模与控制[J]. 动力学与控制, 2009, 7(4): 352-356. Zhou Jianbin, Jin Dongping, Zhang Shusen. Dynamic modeling and control of carrier aircraft arresting system[J]. Journal of Dynamics and Control, 2009, 7(4): 352-356. (in Chinese)

[13] 刘金琨. 先进PID控制及其MATLAB仿真[M]. 北京: 电子工业出版社, 2003: 1-23. Liu Jinkun. Advanced PID control and simulation with MATLAB[M]. Beijing: Publishing House of Electronics Industry, 2003: 1-23. (in Chinese)

[14] Naval Air Engineering Center. MIL-STD-2066 Catapulting and arresting gear forcing functions for aircraft structural design[S]. Lakehurst, NJ, USA: Department of the Navy Air Systems Command, 1981: 108-170.

[15] Rao A V. User's manual for GPOPS: Version 2.3[M]. 2009.

[16] 程代展. 应用非线性控制[M]. 北京: 机械工业出版社, 2006:138-176. Cheng Daizhan. Applied nonliear control[M]. Beijing: China Machine Press, 2006: 138-176. (in Chinese)
文章导航

/