面向再入飞行器概念设计,提出了一种实现外形多目标优化的综合设计方法。基于类型函数/形状函数变换技术建立参数化几何模型,实现了以少量设计变量描述较大范围的设计空间;引入考虑真实气体效应的工程方法估算气动特性,应用非支配排序遗传算法(NSGA-Ⅱ)实现考虑升阻比和容积利用率最大化以及热流量最小化的多目标优化设计;通过减法聚类提取典型设计构型,并根据分层图可视化地从Pareto前端与Pareto最优解集中定量筛选设计方案。双锥布局再入飞行器优化结果表明,可以在不损失容积利用率的情况下,使设计点处配平升阻比从0.65提高到0.94。该方法同时还有利于概念设计中有效压缩设计空间和确定外形设计参数选择的方向与范围。
This paper presents a multi-objective shape optimization method for the conceptual design of reentry vehicles. The class function/shape function transformation technique is used to represent briefly the various shapes of the reentry vehicles with relatively few variables. The aerodynamic characteristics of the vehicles are predicted by an engineering method which accounts for the effects of real-gas flow across the oblique shock wave. The multi-objective evolutionary algorithm non-dominated sorting genetic algorithm (NSGA-Ⅱ) which produces a set of Pareto solutions is employed as the optimization strategy to trade off the maximization of lift-drag ratio, volumetric efficiency, and the minimization of overall heat rate. Representative configurations are then obtained using a subtractive clustering algorithm and an optimum solution is visually identified with level diagrams which is a graphical rephical representation of the Pareto front and set. Design optimization of a bicone baseline configuration demonstrates that the trimmed lift-drag ratio is improved from 0.65 through 0.94 without reducing volumetric efficiency. This method also contributes a great deal to the reduction of the design space of a conceptual design and the determination of aerodynamic shape parameters.
[1] 张鲁民. 航天飞机空气动力学分析[M]. 北京:国防工业出版社, 2009: 74-76. Zhang Lumin. Aerodynamic analysis of space shuttle[M]. Beijing: National Defense Industry Press, 2009: 74-76. (in Chinese)
[2] Theisinger J E, Braun R D. Multi-objective hypersonic entry aeroshell shape optimization[J]. Journal of Spacecraft and Rockets, 2009, 46(5): 957-966.
[3] Theisinger J E, Braun R D, Clark I G. Aerothermodynamic shape optimization of hypersonic entry aeroshells. AIAA-2010-9200, 2010.
[4] Brown J L, Garcia J A, Kinney D J. An asymmetric capsule vehicle geometry study for CEV. AIAA-2007-604, 2007.
[5] Johnson J E, Starkey R P, Lewis M J. Aerothermodynamic optimization of reentry heat shield shapes for a crew exploration vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(4): 849-859.
[6] 唐伟, 桂业伟, 方方. 新型升力再入飞船返回舱气动外形选型研究[J]. 宇航学报, 2008, 29(1): 84-88. Tang Wei, Gui Yewei, Fang Fang. Aerodynamic configurations selection for lift reentry capsule[J]. Journal of Astronautics, 2008, 29(1): 84-88. (in Chinese)
[7] 唐伟, 桂业伟, 王安龄. 飞行器热气动布局优化设计研究[J]. 宇航学报, 2009, 30(5): 1803-1807. Tang Wei, Gui Yewei, Wang Anling. Proposal of thermal configuration optimization design for a maneuverable vehicle[J]. Journal of Astronautics, 2009, 30(5): 1803-1807. (in Chinese)
[8] Whitmore S A. Real-gas extensions to tangent-wedge and tangent-cone analysis methods[J]. AIAA Journal, 2007, 45(8): 2024-2032.
[9] Kulfan B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158.
[10] Hirschel E H. Selected aerothermodynamic design problems of hypersonic flight vehicles[M]. Berlin Heidelberg: Springer-Verlag, 2009: 211-278.
[11] 王保国, 刘淑艳, 黄伟光. 气体动力学[M]. 北京: 北京理工大学出版社, 2005: 557-561. Wang Baoguo, Liu Shuyan, Huang Weiguang. Gasdynamics[M]. Beijing: Beijing Institute of Technology Press, 2005: 557-561. (in Chinese)
[12] Anderson J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: American Institute of Aeronautics and Astronautics, 2006: 341-346.
[13] Viviani A, Pezzella G. Nonequilibrium aerothermodynamics for a capsule reentry vehicle[J]. Engineering Applications of Computational Fluid Mechanics, 2009, 3(4): 543-561.
[14] Gordon S, McBride B J. Computer program for calculation of complex chemical equilibrium compositions and applications(Ⅰ. Analysis). NASA RP-1311, 1994.
[15] 赵汉元. 飞行器再入动力学和制导[M]. 长沙: 国防科技大学出版社, 1997: 7-15. Zhao Hanyuan. Reentry dynamics and guidance of flight vehicles[M]. Changsha: Press of National University of Defense Technology, 1997: 7-15. (in Chinese)
[16] Hirschel E H, Weiland C. Design of hypersonic flight vehicles: some lessons from the past and future challenges[J]. CEAS Space Journal, 2011, 1(1-4): 3-22.
[17] Yamamoto Y, Yoshioka M. CFD and FEM coupling analysis of OREX aerothermodynamic flight data. AIAA-1995-2087, 1995.
[18] Zio E, Bazzo R. A clustering procedure for reducing the number of representative solutions in the Pareto front of multiobjective optimization problems[J]. European Journal of Operational Research, 2011, 210(3): 624-634.
[19] 白振东, 刘虎, 徐敏, 等. 飞机总体设计优化中的多目标方案优选方法[J]. 航空学报, 2009, 30(8): 1447-1453. Bai Zhendong, Liu Hu, Xu Min, et al. Preferred selection method for multiobjective concepts in aircraft conceptual design optimization[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1447-1453. (in Chinese)
[20] Blasco X, Herrero J M, Sanchis J, et al. A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization[J]. Information Sciences, 2008, 178(20): 3908-3924.