材料工程与机械制造

涡轮叶片精铸模具陶芯定位元件逆向调整算法

展开
  • 西北工业大学 现代设计与集成制造技术教育部重点实验室, 陕西 西安 710072
崔康(1985- ) 男,硕士研究生。主要研究方向:计算机辅助技术、现代集成制造。 Tel: 029-88493232-227 E-mail: cuikang4927087@163.com;汪文虎(1965- ) 男,博士,教授,博士生导师。主要研究方向:计算机辅助技术、现代集成制造。 Tel: 029-88490427 E-mail: npuwwh@nwpu.edu.cn

收稿日期: 2011-01-17

  修回日期: 2011-03-16

  网络出版日期: 2011-10-27

基金资助

国家科技支撑计划(2006BAF04B02);国家"863"计划(2006AA04Z144)

Reverse Adjustment Algorithm of Ceramic Core Locators in Hollow Turbine Blade Investment Casting Die

Expand
  • Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2011-01-17

  Revised date: 2011-03-16

  Online published: 2011-10-27

摘要

针对空心涡轮叶片蜡型压制过程中陶芯定位元件补偿量难以量化问题,提出了基于蜡型壁厚测量结果的逆向解析算法。通过建立陶芯定位误差传递模型和逆向调整模型,确定了陶芯壁厚偏差与定位元件补偿量之间的映射关系。运用超声脉冲反射法对一组蜡型进行壁厚测量,根据测量结果逆向调整陶芯定位元件尺寸并重新压制蜡型进行对比分析。结果表明,该方法能够有效计算陶芯定位元件尺寸补偿量,对提高空心涡轮叶片蜡型定型效率以及进一步控制空心涡轮叶片壁厚精度有一定指导意义。

本文引用格式

崔康, 汪文虎, 蒋瑞嵩, 赵德高 . 涡轮叶片精铸模具陶芯定位元件逆向调整算法[J]. 航空学报, 2011 , 32(10) : 1924 -1929 . DOI: CNKI:11-1929/V.20110427.1601.007

Abstract

A reverse compensation algorithm based on measurement results is proposed in order to control the wall thickness deviation during the production of hollow turbine blade wax patterns. By setting up a location error transmission model and a reverse adjustment model, the mathematical relationship between the measurement results of wall thickness deviation and the compensation of ceramic core locators is established. Moreover, the wall thickness deviation of a batch of wax patterns is measured by using an ultrasonic pulse reflection method. According to the measurement results, the ceramic core locators are readjusted. Furthermore, a new batch of wax patterns are produced for demonstration. The result shows that this algorithm can calculate the dimensional compensation of ceramic core locators effectively and thus provide guidance for raising the setting efficiency of hollow turbine blade wax patterns and controlling the accuracy of hollow turbine blade wall thickness.

参考文献

[1] 张立同, 曹腊梅, 刘国利, 等. 近净形熔模精密铸造理论与实践[M]. 北京: 国防工业出版社, 2007. Zhang Litong, Cao Lamei, Liu Guoli, et al. Theory and practice of near net-shape investment casting[M]. Beijing: National Defense Industry Press, 2007. (in Chinese)

[2] Asada H, By A. Kinematic analysis of workpiece fixturing for flexible assembly with automatically reconfigurable fixtures [J]. IEEE Journal of Robotics and Automation, 1985, 1(2): 86-94.

[3] Hong M, Payandeh S, Gruver W A. Modeling and analysis of flexible fixturing systems for agile manufacturing[J]. Systems, Man, and Cybernetics, 1996, 2: 1231-1236.

[4] Yan H C, Ahmad S. Kinematic analysis of fixturing systems for robot aided assembly //Proceedings of IEEE International Conference on Systems Engineering. 1990: 499-502.

[5] Wang M Y. Tolerance analysis for fixture layout design[J]. Journal of Assembly Automation, 2002, 22(2): 153-162.

[6] Rong Y, Hu W, Kang Y, et al. Locating error analysis and tolerance assignment for computer aided fixture design [J]. International Journal of Production Research, 2001, 39(15): 3529-3545.

[7] Hu W, Rong Y. A fast interference checking algorithm for automated fixture design verification [J]. The International Journal of Advanced Manufacturing Technology, 2000, 16(8): 571-581.

[8] Li J, Ma W, Rong Y. Fixturing surface accessibility analysis for automated fixture design [J]. International Journal of Production Research, 1999, 37(13): 2997-3016.

[9] Huang X, Gu P. Tolerance analysis in setup and fixture planning for precision machining //Proceedings of IEEE International Conference on Computer Integrated Manufacturing and Automation Technology. 1994: 298-305.

[10] Kang Y, Rong Y, Yang J C. Computer aided fixture design verification. Part 1. the framework and modeling [J]. International Journal of Advanced Manufacturing Technology, 2003, 21(10-11): 827-835.

[11] Kang Y, Rong Y, Yang J C. Computer aided fixture design verification. Part 2. tolerance analysis [J]. International Journal of Advanced Manufacturing Technology, 2003, 21(10-11): 836-841.

[12] Kang Y, Rong Y, Yang J C. Computer aided fixture design verification. Part 3. stability analysis [J]. International Journal of Advanced Manufacturing Technology, 2003, 21(10-11): 842-849.

[13] Hockenberger M J, de Meter E C. The application of meta-functions to the quasi-static analysis of workpiece displacement within a machining fixture [J]. Journal of Manufacturing Science and Engineering, 1996, 118(3): 325-331.

[14] Liu Y H, Lam M L, Ding D. A complete and efficient algorithm for searching 3D form-closure grasps in the discrete domain [J]. IEEE Transactions on Robotics and Automation, 2004, 20(4): 805-816.
文章导航

/