电子与自动控制

折叠翼飞行器发射段鲁棒非线性控制系统设计

展开
  • 第二炮兵工程大学 自动控制工程系, 陕西 西安 710025
曹立佳(1982- ) 男,博士研究生。主要研究方向:飞行器控制、仿真与决策。 Tel: 029-84741963 E-mail: caolijia82@gmail.com;张胜修(1963- ) 男,博士,教授,博士生导师。主要研究方向:组合导航与飞行器制导控制。 Tel: 029-84741963 E-mail: zsx1963@yahoo.com.cn;李晓峰(1982- ) 男,博士研究生。主要研究方向:飞行器控制与成像制导。 Tel: 029-84741963 E-mail: xiaofeng_li@126.com;刘毅男(1983- ) 男,博士研究生。主要研究方向:飞行器控制、仿真与决策。 Tel: 029-84741963 E-mail: spacemanren@qq.com

收稿日期: 2011-03-24

  修回日期: 2011-04-09

  网络出版日期: 2011-10-27

基金资助

国家自然科学基金(60874093)

Robust Nonlinear Control System Design for Folding-wing Aerial Vehicles During Launching Time

Expand
  • Department of Automatic Control Engineering, The Second Artillery Engineering University, Xi'an 710025, China

Received date: 2011-03-24

  Revised date: 2011-04-09

  Online published: 2011-10-27

摘要

为解决折叠翼飞行器在发射段各项特性变化较大、对飞行控制律鲁棒性要求较高的问题,设计了一种以块控反步法为基础的自适应鲁棒非线性控制器。在发射段动态模型基础上,该控制器采用径向基函数(RBF)神经网络自适应逼近飞行器特性变化时的系统未知不确定性和干扰,通过在虚拟控制律中引入动态面控制技术避免多重微分运算,克服了传统反步法所带来的"项数膨胀"问题。利用Lyapunov稳定性定理证明了闭环系统有界且跟踪误差指数收敛于零的一个小邻域。在考虑未知不确定性的情况下,对某型折叠翼飞行器进行的6自由度(DOF)飞行仿真结果验证了所设计控制器的有效性和鲁棒性。

本文引用格式

曹立佳, 张胜修, 李晓峰, 刘毅男 . 折叠翼飞行器发射段鲁棒非线性控制系统设计[J]. 航空学报, 2011 , 32(10) : 1879 -1887 . DOI: CNKI:11-1929/V.20110526.1757.022

Abstract

The characteristics of a folding-wing aerial vehicle undergo fairly great changes during its launching time. To fulfill the high robustness requirements of a flight control system, an adaptive robust nonlinear flight controller based on block backstepping is designed. A variable dynamic model is established, and the unknown uncertainty and disturbance caused by aerodynamic characteristic changes are adaptively approximated by radial basis function (RBF) neural networks. Dynamic surface control is employed to replace the differentiations of the virtual control law in traditional backstepping to overcome the problem of "term explosion". The closed-loop system is guaranteed to be bounded and the tracking errors are also proved to converge exponentially to a small neighborhood around zero by the Lyapunov approach. Furthermore,the effectiveness and robustness of the designed flight controller are verified by six degree-of-freedom (DOF) nonlinear flight simulations for the folding-wing aerial vehicle with unknown uncertainty.

参考文献

[1] 姜智超, 吴森堂, 金宪哲. 折叠翼飞行器鲁棒飞行控制系统设计方法[J]. 控制与决策, 2008, 23(7): 833-836. Jiang Zhichao, Wu Sentang, Jin Xianzhe. Design of robust flight control systems for a flex-wing vehicle[J]. Control and Decision, 2008, 23(7): 833-836. (in Chinese)

[2] Lane S H, Stengel R F. Flight control design using non-linear inverse dynamics[J]. Automatica, 1988, 24(4): 471-483.

[3] Kristic M, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptive control design[M]. New York: John Wiley & Sons, 1995.

[4] Sharma M, Richards N D. Adaptive integrated guidance and control for missile interceptors. AIAA-2004-4880, 2004.

[5] Polycarpou M, Farrell J, Sharma M. On-line approximation control of uncertain nonlinear systems: issues with control input saturation. ADA436259, 2005.

[6] Farrell J, Polycarpou M, Sharma M. Adaptive backstepping with magnitude, rate, and bandwidth constraints: aircraft longitude control. ADA442139, 2006.

[7] Sonneveldt L, Chu Q P, Mulder J A, et al. Constrained adaptive backstepping flight control: application to a nonlinear F-16/MATV model. AIAA-2006-6413, 2006.

[8] 朱铁夫, 李明, 邓建华. 基于Backstepping控制理论的非线性飞控系统和超机动研究[J]. 航空学报, 2005, 26(4): 430-433. Zhu Tiefu, Li Ming, Deng Jianhua. Nonlinear flight control system based on backstepping theory and supermaneuver[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(4): 430-433. (in Chinese)

[9] Harkegard O, Glad T. Vector backstepping design for flight control. AIAA-2007-6421, 2007.

[10] Robinson J W C. Block backstepping for nonlinear flight control law design[J]. Lecture Notes in Control and Information Sciences, 2007, 365(1): 231-257.

[11] Thunberg J, Robinson J W C. Block backstepping, NDI and related cascade designs for efficient development of nonlinear flight control laws. AIAA-2008-6960, 2008.

[12] Farrell J, Sharma M, Polycarpou M. Backstepping-based flight control with adaptive function approximation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1089-1102.

[13] Ren W, Atkins E. Nonlinear trajectory tracking for fixed wing UAVs via backstepping and parameter adaptation . AIAA-2005-6196, 2005.

[14] Lee T, Kim Y. Nonlinear adaptive flight control using backstepping and neural networks controller[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(4): 675-682.

[15] Niu Y, Lam J, Wang X, et al. Adaptive H control using backstepping design and neural networks[J]. Journal of Dynamic Systems, Measurement, and Control, 2005, 127(3): 478-485.

[16] Stevens B L, Lewis F L. Aircraft control and simulation[M]. 2nd ed. New York: John Wiley & Sons, 2003.

[17] Das A. Nonlinear design of 3-axes autopilot for short range skid-to-turn surface-to-surface homing missiles. Kharagpur: Indian Institute of Technology, 2006.

[18] Li C Y, Jing W X, Gao C S. Adaptive backstepping-based flight control system using integral filters[J]. Aerospace Science and Technology, 2009, 13(2-3): 105-113.

[19] Li Y, Qiang S, Zhuang X, et al. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks[J]. IEEE Transactions on Neural Networks, 2004, 15(3): 693-701.

[20] 周丽, 姜长生. 改进的非线性鲁棒自适应动态面控制[J]. 控制与决策, 2008, 23(8): 938-943. Zhou Li, Jiang Changsheng. Improved robust and adaptive dynamic surface control for nonlinear systems[J]. Control and Decision, 2008, 23(8): 938-943. (in Chinese)
文章导航

/