随机结构在随机激励作用下的结构响应具有随机不确定性,响应的分布函数(CDF)能够充分地体现响应量分布变化规律,只要掌握了响应的CDF,就可以进一步掌握响应的统计信息。基于响应的CDF,对基本变量的分布参数进行灵敏度分析,可以表明基本变量的随机不确定性对输出响应的随机不确定性的影响程度,从而清楚地表明重要随机变量和非重要随机变量,为降低变量维数和优化设计提供依据。针对承受阵风激励的典型喷气运输机(BAH)的机翼,采用近似解析法、Monte Carlo模拟(MCS)法以及本文所建立的分层线抽样(SLS)方法对机翼的翼根弯矩(RBM)进行CDF求解,并进行CDF的灵敏度分析,通过分析得到第二阶和第五阶模态的质量和频率对阵风响应的CDF影响较大的结论。
Uncertainty of structural parameters will lead to the uncertainty of responses of stochastic structures with stochastic excitation. The cumulative distribution function (CDF) of the response can adequately reflect the response quantity distribution. Once the CDF of the response is mastered, its statistical information may be further grasped. A sensitivity analysis of the distributed parameters of the basic variable based on the CDF of response may indicate its influence on the stochastic uncertainty of the output response, This approach shows clearly the important random variables and non-important random variables, thereby reducing the variable dimension and providing basis for design optimization. This paper employs the approximate analytical method, Monte Carlo simulation (MCS) method and a novel stratified line sampling (SLS) method to solve the CDF of the root bending moment (RBM) of a typical random BAH jet transport aircraft wing with gust excitation and the corresponding sensitivity. It is found that the masses and frequencies of the second and fifth order modals have comparatively larger influence on the CDF of gust response.
[1] Gasella G, Berger R L. Statistical inference[M]. Beijing: China Machine Press, 2002: 29-34.
[2] Mendenhall W, Beaver R J, Beaver B M. Introduction to probability and statistics[M]. Beijing: China Machine Press, 2005: 154-163.
[3] Wu Y T. Computational methods for efficient structural reliability and reliability sensitivity analysis[J]. AIAA Journal, 1994, 32(8): 1717-1723.
[4] Hasofer A M, Lind N C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division, ASCE, 1974, 100(1): 111-121.
[5] Rubinstein R Y. Simulation and the Monte Carlo method[M]. New York: Wiley, 1981: 144-181.
[6] Schueller G I, Pradlwarter H J. A critical appraisal of reliability estimation procedures for high dimensions[J]. Probabilistic Engineering Mechanics, 2004, 19(4): 463-474.
[7] Pradlwarter H J, Pellissetti M F, Schenk C A, et al. Realistic and efficient reliability estimation for aerospace structures[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(12-16): 1597-1617.
[8] 宋述芳, 吕震宙. 高维小失效概率下的改进线抽样方法[J]. 航空学报, 2007, 28(3): 596-599. Song Shufang, Lu Zhenzhou. Improved line sampling method for structural reliability with high dimensionality and small failure probability[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 596-599.(in Chinese)
[9] Rodden W P, Johnson E H. MSC/NASTRAN aeroelastic analysis user's guide: Version 68[M]. Los Angeles: MacNeal-Schwendler, 1994: 66-73, 357-373, 397-411.
[10] 张伟伟, 叶正寅, 杨青, 等. 基于ROM技术的阵风响应分析方法[J]. 力学学报, 2008, 40(5): 593-598. Zhang Weiwei, Ye Zhengyin, Yang Qing, et al. Gust response analysis using CFD-based reduced order models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 593-598. (in Chinese)
[11] 杨超, 邹丛青. 多输入气动伺服弹性系统抗阵风不灵敏性研究[J]. 航空学报, 2000, 21(6): 496-499. Yang Chao, Zou Congqing. Analysis of insensitivity to gust for multi-input aeroservoelastic system[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(6): 496-499.(in Chinese)
[12] Raveh D E. CFD-based models of aerodynamic gust response[J]. Journal of Aircraft, 2007, 44(3): 888-897.
[13] 乔红威. 结构概率分析方法及其应用研究. 西安: 西北工业大学航空学院, 2009. Qiao Hongwei. Research on theory and application of structural probabilistic analysis. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 2009. (in Chinese)
[14] 吕震宙, 宋述芳, 李洪双, 等. 结构机构可靠性及可靠性灵敏度分析[M]. 北京:科学出版社, 2009: 10-20. Lu Zhenzhou, Song Shufang, Li Hongshuang, et al. The reliability and reiability sensitivity analysis for structure and machine system[M]. Beijing: Science Press, 2009: 10-20. (in Chinese)
[15] Au S K, Beck J L. Subset simulation and its application to probabilistic seismic performance assessment[J]. Journal of Engineering Mechanics, ASCE, 2003, 129(8): 1-17.
[16] Lu Z Z, Song S F, Yue Z F, et al. Reliability sensitivity method by line sampling[J]. Structural Safety, 2008, 30(2): 517-532.
[17] 宋述芳, 吕震宙, 傅霖. 基于线抽样的可靠性灵敏度分析方法[J]. 力学学报, 2007, 39(4): 564-570. Song Shufang, Lu Zhenzhou, Fu Lin. Reliability sensitivity algorithm based on line sampling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 564-570. (in Chinese)