材料工程与机械制造

基于负刚度预载荷机构的锥形介电型EAP驱动器研究

展开
  • 1. 南京航空航天大学 机电学院, 江苏 南京 210016;
    2. 中国科学院沈阳自动化研究所 机器人学国家重点实验室, 辽宁 沈阳 110016
朱银龙(1981-) 男,博士研究生。主要研究方向:介电型EAP换能器、机器人。 E-mail: zhuyinlong@nuaa.edu.cn; 赵东标(1963-) 男,博士,教授。主要研究方向:数控技术、机器人技术。 E-mail: zdbme@nuaa.edu.cn; 栾云广(1983-) 男,博士研究生。主要研究方向:弹跳机器人。 E-mail: luanyunguang@163.com

收稿日期: 2010-12-08

  修回日期: 2011-02-28

  网络出版日期: 2011-09-16

基金资助

国家自然科学基金(50975139);机器人学国家重点实验室开放基金(RLO200912)

Research of Conically-shaped Dielectric Electroactive Polymer Actuators Based on Negative Stiffness Preload Mechanism

Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

Received date: 2010-12-08

  Revised date: 2011-02-28

  Online published: 2011-09-16

摘要

为了便于对介电型EAP驱动器进行优化设计,针对介电型EAP驱动器进行建模是极其重要的。结合弹性大变形理论及Maxwell应力建立介电型EAP材料的机电耦合模型,分析一种可以提高驱动器性能的负刚度预载荷机构,在此基础上建立基于负刚度预载荷机构的锥形介电型EAP驱动器模型。通过对微分代数方程组的求解,分析预载荷机构对驱动器驱动性能的影响,得出特定尺寸的锥形驱动器在不同驱动电压下的电压-位移曲线以及驱动器薄膜中的主延伸率、主应力分布情况,同时给出了锥形驱动器的力-位移曲线。最后将试验结果与理论分析进行比较,给出了导致偏差的原因。结果表明,本文建立的模型可以为锥形介电型EAP驱动器的设计应用提供参考依据。

本文引用格式

朱银龙, 王化明, 赵东标, 栾云广 . 基于负刚度预载荷机构的锥形介电型EAP驱动器研究[J]. 航空学报, 2011 , 32(9) : 1746 -1754 . DOI: CNKI:11-1929/V.20110412.1541.009

Abstract

Modeling a dielectric electroactive polymer (EAP) actuator is crucial for the design and optimization of actuators. By combining the large deformation elastic theory of membranes and Maxwell stress, this paper builds a model that describes the electromechanical coupling of dielectric EAP materials. A negative stiffness preload mechanism is analyzed which can significantly improve the actuation characteristics of an EAP actuator, and a model of a conically-shaped dielectric EAP actuator with negative stiffness preload mechanism is founded. By computing the nonlinear ordinary differential algebraic equations, the main factors that contribute to the performance of the conically-shaped dielectric EAP actuator are analyzed. The voltage-displacement curves and principal stretch ratio and the distribution of principal stress in the membrane under different voltages are obtained. At the same time, the force-displacement curve of the EAP actuator with voltage on or off is also derived. Finally, factors contributing to the deviation between theoretical analysis and experimental results are listed. The results show that the proposed model can guide the design and application of conically-shaped dielectric EAP actuators.

参考文献

[1] Yoseph B C. Electroactive polymer (EAP) actuators as artificial muscles-reality, potential and challenges[M]. Bellingham: SPIE Press, 2004.

[2] Dubowsky S, Lagnemma K, Liberatore S, et al. A concept mission: microbots for large-scale planetary surface and subsurface exploration//AIP Conference Proceedings. 2006: 1449-1458.

[3] Jhong Y Y, Huang C M, Hsieh C C, et al. Improvement of viscoelastic effects of dielectric elastomer actuator and its application for valve devices//Proceedings of SPIE. 2007, 6524: 65241Y.1-65241Y.9.

[4] Goulbourne N C, Frecker M I, Mockensturm E, et al. Electro-elastic modeling of a dielectric elastomer diaphragm for a prosthetic blood pump//Proceedings of SPIE. 2004, 5385: 122-133.

[5] Aschwanden M, Beck M, Stemmer A, et al. Diffractive transmission grating tuned by dielectric elastomer actuator[J]. IEEE Photonics Technology Letters, 2007, 19(14):1090-1092.

[6] 王化明,朱剑英,叶克贝, 等. 介电弹性体线性驱动器研究[J]. 机械工程学报, 2009, 45(7): 291-296. Wang Huaming, Zhu Jianying, Ye Kebei, et al. Research on linear dielectric elastomer actuator[J]. Journal of Mechanical Engineering, 2009, 45(7): 291-296. (in Chinese)

[7] Luan Y G, Wang H M, Zhu Y L. Design and implementation of cone dielectric elastomer actuator with double-slider mechanism[J]. Journal of Bionic Engineering, 2010, 7(Supplement 1): S212-S217.

[8] Suo Z G, Zhao X H, Greene W H. A nonlinear field theory of deformable dielectrics[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 467-486.

[9] Goulbourne N C, Mockensturm E M, Frecker M I. Electro-elastomers: large deformation analysis of silicone membranes[J]. International Journal of Solids and Structures, 2007, 44(9): 2609-2626.

[10] Toupin R A. The elastic dielectric[J]. Journal of Rational Mechanics and Analysis, 1956(5): 850-915.

[11] Tezduyar T E, Wheeler L T, Graux L. Finite deformation of a circular elastic membrane containing a concentric rigid inclusion[J]. International Journal of Non-Linear Mechanics, 1987, 22(1): 61-72.

[12] He T H, Zhao X H, Suo Z G. Dielectric elastomer membranes undergoing inhomogeneous deformation[J]. Journal of Applied Physics, 2009, 106(8): 083522-083528.

[13] Yeoh O H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates[J]. Rubber Chemistry & Technology, 1990, 63(5): 792-805.

[14] Fung Y C. Biomechanics: mechanical properties of living tissues[M]. 2nd ed. New York: Springer-Verlag, 1993: 277-278.

[15] Kofod G, Kornbluh R, Pelrine R, et al. Actuation response of polyacrylate dielectric elastomers[J]. Journal of Intelligent Material Systems and Structures, 2003, 14(12): 787-793.

[16] Liu Y J, Liu L W, Yu K, et al. An investigation on electromechanical stability of dielectric elastomers undergoing large deformation[J]. Smart Materials and Structures, 2009, 18(9): 095040-095048.
文章导航

/