为了有效控制自动铺带成型工艺参数,针对自动铺带成型工艺过程,分析了自动铺带成型过程中温度对预浸料铺放效果的影响。在一定的压力和速度作用下,根据温度对自动铺带过程中预浸料基体流动性的影响,提出了一种基于热弹性理论来计算预浸料形变的方法。针对预浸料的铺覆性和形变进行自动铺放试验,验证了在自动铺带过程中温度对预浸料黏附性和带宽变形均有影响:预浸料黏附性随着温度的升高先增大后减小,而预测浸料带宽随着温度的升高和基体流动性的增大而越来越大。从而证明了热弹性理论计算预浸料形变的正确性和可行性,为自动铺带成型工艺参数提供了理论依据。最后,总结分析温度对预浸料铺放质量的影响,为实际产品成型工艺提供参考。
Based on the analysis of automatic tape laying (ATL) process, this paper introduces temperature in the process of ATL, aiming at bettering the control of ATL. Under a certain pressure and velocity, this paper proposes a theoretical calculation based on thermal elastic deformation to predict prepreg deformation, according to the influence of temperature on fluidity of prepreg in the process of ATL. Then through ATL experiment on the coverage and deformation of prepreg, it is found that the temperature affects both the adherence and bandwidth of prepreg. With the increase of temperature, adherence of prepreg increases first and then decreases, while the bandwidth keeps increasing with the increase of temperature and fluidity of prepreg. This proves the correctness and feasibility of the proposed method and provides a theoretical basis for parameters of ATL process. Finally, the influence of temperature on the placement quality of prepreg is analyzed to better the control of ATL, which provides a reference for the actual molding process.
[1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. Du Shanyi, Guan Zhidong. Advanced composites in China large passenger aircraft technology responses[J]. Acta Materiae Compositae Sinica, 2008,25(1): 1-10. (in Chinese)
[2] Grimshaw M N, Grant C G, Diza J M L. Advanced technology tape laying for affordable manufacturing of large composite structures//46th International SAMPE Symposium. 2001: 2484-2494.
[3] Timothy G G. Advanced composites manufacturing[M]. New York: John Wiley & Sons, 1997: 32-83.
[4] Yoshiaki S, Tomohiro I. Low cost towpreg for automated fiber placement[J]. SAMPE Journal, 2004, 40(2): 66-69.
[5] Falchi A, Greffioz A, Ginbach E. Automatic laying of unidirectional prepreg tapes on compound surfaces//European Conference on Composite Materials. 1990: 135.
[6] 杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1): 1-12. Du Shanyi. Advanced composite material and aerospace[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12. (in Chinese)
[7] 肖军,李勇,李建龙.自动铺放技术在大型飞机复合材料结构件制造中的应用[J].航空制造技术,2008(1):50-53. Xiao Jun, Li Yong, Li Jianlong. Automated placement technology application on large airplane composite component manufacture[J]. Aeronautical Manufacturing Technology, 2008(1): 50-53. (in Chinese)
[8] 林胜.自动铺带机/铺丝机(ATL/AFP)——现代大型飞机制造的关键设备(上)[J]. 世界制造技术与装备市场WMEM, 2009(4): 84-89. Lin Sheng. ATL/AFP—The key machine for manufacturing of modern large airplane(A)[J]. World Manufacturing Engineering & Market, 2009(4): 84-89. (in Chinese)
[9] 肖军, 李勇, 文立伟, 等.树脂基复合材料自动铺放技术进展[J]. 中国材料进展, 2009(6):28-32. Xiao Jun, Li Yong, Wen Liwei, et al. Progress of automated placement technology for polymer composites[J]. Materials China, 2009(6): 28-32. (in Chinese)
[10] 陈祥宝. 聚合物基复合材料手册[M]. 北京:化学工业出版社, 2004: 50-52. Chen Xiangbao. Handbook of polymer composites[M]. Beijing: Chemical Industry Press, 2004: 50-52. (in Chinese)
[11] 严宗达, 王洪礼. 热应力[M]. 北京:高等教育出版社, 1993: 421-423. Yan Zongda, Wang Hongli. Thermal stress[M]. Beijing: Higher Education Press, 1993: 421-423. (in Chinese)
[12] 赵燕茹, 刑永明, 雷振坤, 等. 力、热载荷作用下纤维在复合材料中的界面应力传递行为[J]. 复合材料学报, 2008, 25(4):187-192. Zhao Yanru, Xing Yongming, Lei Zhenkun, et al. Interfacial stress transfer behavior of single-fiber composite under the effect of mechanical and thermal loading[J]. Acta Materiae Compositae Sinica, 2008,25(4):187-192. (in Chinese)
[13] Takeuti Y, Tanigawa Y. Improved difference equation of the biharmonic function and some applications for elasticity[J]. Mechanics Research Communications, 1977(2): 123-127.
[14] 张汝光. 复合材料热膨胀系数的计算[J]. 玻璃钢, 1998(4): 1-8. Zhang Ruguang. Calculation on composite coefficient of thermal expansion[J]. Glassfiber Reinforced Plastics, 1998(4): 1-8. (in Chinese)