固体力学与飞行器总体设计

具有随机不确定性的机翼颤振优化

展开
  • 南京航空航天大学 航空宇航学院, 江苏 南京 210016
张军红(1975-) 男,博士研究生。主要研究方向:飞行器气动弹性力学。 Tel: 025-84896484 E-mail:zjhnuaa@163.com

收稿日期: 2010-12-01

  修回日期: 2011-01-05

  网络出版日期: 2011-09-16

基金资助

国家自然科学基金 (10872089)

Flutter Optimization of Wing Structure with Random Uncertainty

Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2010-12-01

  Revised date: 2011-01-05

  Online published: 2011-09-16

摘要

针对不确定性参数在颤振优化分析中的影响,提出了一种含颤振约束的、具有随机不确定性的机翼气动弹性优化设计方法。在MSC.NASTRAN平台上建立了结构的动力学模型、采用ZAERO程序进行了非定常气动力计算与颤振分析,用响应面方法计算了隐式失效功能函数,以重量最小为设计目标,对包含颤振概率约束的复合材料机翼进行了优化设计。研究显示,该方法切实可行,能有效解决机翼结构不确定性优化中计算量大、失效功能函数不能显式表达的问题,并且该方法适用于大型复杂模型,方便软件集成。所得到的优化设计解对随机不确定性具有稳定性。

本文引用格式

张军红, 韩景龙, 王晓庆 . 具有随机不确定性的机翼颤振优化[J]. 航空学报, 2011 , 32(9) : 1629 -1636 . DOI: CNKI:11-1929/V.20110419.1702.003

Abstract

A novel method is presented considering the effect of uncertainty in flutter optimization problem, which is used to perform the optimization design of composite material wing including random uncertainty parameters. The structure dynamic model is constructed using MSC.NASTRAN, the unsteady aerodynamic force is computed by ZAERO, and the implicit limit state function describing flutter failure criterion is built by response surface method. At last the optimization of composite material wing is conducted under the constraint of flutter speed. The results show that this method can solve the optimization problem of wing structure with uncertainties efficiently, is convenient to be applied to software integration and is suitable for large complex structural model. The optimization design has stability under the effects of random uncertainties.

参考文献

[1] Guo S J, Chen W Y, Cui D G. Aeroelastic tailoring of composite wing structures by laminate layup optimization[J]. AIAA Journal, 2006, 44(12): 3146-3149.

[2] Guo S J. Aeroelastic optimization of an aerobatic aircraft wing structure[J]. Aerospace Science and Technology, 2007, 11(5): 396-404.

[3] Attaran A, Majid D L. Structural optimization of an aeroelastically tailored composite flat plate made of woven fiberglass/epoxy[J]. Acta Mechanics, 2008, 196(4): 161-173.

[4] Arizono H. Application of genetic algorithm for aeroelstic tailoring of a cranked arrow wing[J]. Journal of Aircraft, 2005, 42(2): 493-499.

[5] Manan A, Vio G A, Harmin M Y, et al. Optimization of aeroelastic composite structures using evolutionary algorithms[J]. Engineering Optimization, 2010, 42(2): 171-184.

[6] Petti C L. Uncertainty quantification in aeroelasticity: recent results and research challenges[J]. Journal of Aircraft, 2004, 41(5): 1217-1229.

[7] Manan A, Cooper J. Design of composite wings including uncertainties: a probabilistic approach[J]. Journal of Aircraft, 2009, 46(2): 601-607.

[8] 王宇, 余雄庆. 考虑不确定性的飞机总体参数优化方法[J]. 航空学报, 2009, 30(10): 1883-1888. Wang Yu, Yu Xiongqing. Optimization method for aircraft conceptual design under uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1883-1888. (in Chinese)

[9] 吴志刚, 杨超. 气动伺服弹性系统不确定性建模与鲁棒稳定性[J]. 航空学报, 2003, 24(4): 312-316. Wu Zhigang, Yang Chao. Modeling and robust stability for aeroservoealstic systems with uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4): 312-316. (in Chinese)

[10] Wu Z G, Yang C. A new approach for aeroelastic robust stability analysis[J]. Chinese Journal of Aeronautics, 2008, 21(5): 417-422.

[11] 员海玮, 韩景龙, 黄丽丽. 气动弹性系统的模型确认与鲁棒颤振分析[J]. 振动工程学报, 2009, 22(5): 449-455. Yun Haiwei, Han Jinglong, Huang Lili. Model validation and robust flutter analysis of uncertain aeroelastic systems[J]. Journal of Vibration Engineering, 2009, 22(5): 449-455. (in Chinese)

[12] Yun H W, Han J L. Match point solution for robust flut-ter analysis in constant-mach prediction[J]. Chinese Journal of Aeronautics, 2008, 21(5): 105-114.

[13] Yun H W, Han J L. Robust flutter analysis of a nonlinear aeroelastic system with parametric uncertainties[J]. Aero-space Science and Technology, 2009, 13(2): 139-149.

[14] Wang X J, Qiu Z P. Interval finite element analysis of wing flutter[J]. Chinese Journal of Aeronautics, 2008, 21(5): 134-140.

[15] Petti C L, Grandhi R V. Optimization of a wing structure for gust response and aileron effectiveness[J]. Journal of Aircraft, 2003, 40(6): 1185-1191.

[16] Patnail S N, Pai S S, Coroneos R M. Reliability based design optimization of airframe components[J]. Aerospace Engineering, 2009, 223(7): 1019-1036.

[17] Yang Z C, Gu Y S. Robust flutter analysis of an airfoil with flap freeplay uncertainty[J]. Advanced Materials Research, 2008, 33-37(3): 1247-1252.

[18] Gu Y S, Yang Z C. A match-point μ-method with reduced order structured uncertainty. AIAA-2008-2199, 2008.

[19] Song S F, Lu Z Z, Zhang W W, et al. Relaibilty and sensitivity analysis of transonic flutter using improved line sampling technique[J]. Chinese Journal of Aeronautics, 2009, 22(6): 513-519.

[20] Lee Y J, Lin C C. Regression of the response surface of laminated composite structures[J]. Composite Structures, 2003, 62(3): 91-105.

[21] 万志强, 杨超. 大展弦比复合材料机翼气动弹性优化[J]. 复合材料学报, 2005, 22(3): 145-149. Wan Zhiqiang, Yang Chao. Aeroelstic optimization of a high aspect ratio composite wing[J]. Acta Material Composite Sinica, 2005, 22(3): 145-149. (in Chinese)
文章导航

/