采用粒子成像测速(PIV)技术,在静止空气中测量了H型、O型和L型3种结构的介质阻挡等离子体激励器的诱导速度场,分析了流场结构,并研究了激励器设计参数对诱导速度的影响。研究结果表明,3种结构的激励器都产生了离开激励器表面向上的射流。其中O型和L型结构的激励器受电极电压的影响比较明显,随着电极电压的增加,射流速度的最大值增大。H型激励器的诱导射流速度受电极极间宽度影响,随着两侧电极间距的增大,所形成的射流速度也越大,并在极间宽度22 mm时达到最大值;O型激励器的诱导射流速度受激励器电极直径影响,随着电极直径的增大,所形成的射流速度也越大,在直径30 mm时达到最大值;L型激励器的诱导射流方向受电极夹角影响,随着两侧电极夹角的增大,射流从法向射流向平面射流转化。通过对不同结构等离子体射流激励器流场特性的研究,将为等离子体激励器的设计和工程应用奠定基础。
In this paper, the induced velocity fields of three plasma actuators of the H-type, O-type and L-type respectively are measured quantitatively by using the particle image velocimetry (PIV) in quiescent air. The flow field structures are analyzed and the effects of the design parameters are studied. The results show that all the three plasma actuators can induce an upward jet flow. The jet flow velocities of the O-type and L-type are obviously affected by the excitation voltage; they increase with the increase of the excitation voltage. The velocity of the jet flow induced by the H-type actuator is influenced by the width between the electrodes, which increases with the increasing width between the electrodes, and the maximum velocity emerges at the width of 22 mm. The velocity of the jet flow induced by the O-type actuator is influenced by the diameter of the electrodes, which increases with the increasing diameter of the electrodes, and the maximum velocity appears at the diameter of 30 mm. The direction of the jet flow induced by the L-type actuator is influenced by the angle of the electrodes. With the increase of the angle, the orientation of the jet flow changes from vertical to parallel. This research may serve as a basis for the design and application of plasma actuators.
[1] Malik M R, Weinstein L M, Hussaini M Y. Ion wind drag reduction. AIAA-1983-231, 1983.
[2] Roth J R. Investigation of a uniform glow discharge plasma in atmospheric air. ADA296928, 1995.
[3] 宋慧敏, 李应红, 苏长兵, 等. 激励参数对等离子体EHD加速效应影响的试验研究[J]. 高压电器, 2006, 42(6): 435-441. Song Huimin, Li Yinghong, Su Changbing, et al. Experimental studies of excitation parameters' influences on plasma EHD acceleration effect[J]. High Voltage Apparatus, 2006, 42(6): 435-441. (in Chinese)
[4] 李钢, 聂超群, 朱俊强, 等. 介质阻挡放电等离子体流动控制技术的研究进展[J]. 科技导报, 2008, 26(4): 87-92. Li Gang, Nie Chaoqun, Zhu Junqiang, et al. Development of flow control by dielectric barrier discharge plasma[J]. Science & Technology Review, 2008, 26(4): 87-92. (in Chinese)
[5] Patel M P, Terry N T, Vasudevan S, et al. Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. AIAA-2006-3495, 2006.
[6] 李应红, 张朴, 刘建勋, 等. 基于等离子体的流动控制研究现状及分析//中国航空学会航空百年学术论坛动力分论坛. 2003: 131-136. Li Yinghong, Zhang Pu, Liu Jianxun, et al. The development and analysis of plasma based on flow control techniques//Aviation 100th Science Forum Symposium of China Society of Aeronautics and Astronautics. 2003: 131-136. (in Chinese)
[7] Bolitho M, Jacob J D. Thrust vectoring flow control using plasma synthetic jet actuators. AIAA-2008-1368, 2008.