材料工程与机械制造

整体叶盘通道电解加工电极多维运动轨迹优化

展开
  • 南京航空航天大学 机电学院, 江苏 南京 210016
徐庆(1984-) 男,博士研究生。主要研究方向:电解加工技术。 Tel: 025-84895912 E-mail:qxu2008@nuaa.edu.cn; 朱荻(1954-) 男,博士,教授,长江学者特聘教授。主要研究方向:特种加工及微细加工技术。 Tel: 025-84891077 E-mail:dzhu@nuaa.edu.cn; 徐正扬(1979-) 男,博士,讲师。主要研究方向:电解加工技术。 Tel: 025-84892195 E-mail:xuzhy@nuaa.edu.cn; 曲宁松(1967-) 男,博士,教授,硕士生导师。主要研究方向:电铸和电解加工技术。 Tel: 025-84893870 E-mail:nsqu@nuaa.edu.cn

收稿日期: 2010-12-23

  修回日期: 2011-01-28

  网络出版日期: 2011-08-19

基金资助

国家"863"计划(2009AA044206);国家自然科学基金(51005119);江苏省自然科学基金(BK2010506);南京航空航天大学青年科技创新基金(NS2010141)

Optimization of Cathode Multidimensional Movement Path in Electrochemical Machining of Blisk Channels

Expand
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2010-12-23

  Revised date: 2011-01-28

  Online published: 2011-08-19

摘要

为了提高整体叶盘通道余量分布的均匀性,提出了电极运动轨迹优化方法。分析了电解加工间隙对电极运动轨迹的影响,优化了工具电极在叶顶及叶根圆柱面上的运动轨迹,并基于轨迹线上采样点作拟合垂线段中点的样条曲线获得新的轨迹线。为了验证优化后轨迹的合理性,进行了叶盘通道电解加工对比试验。试验表明,与优化前的轨迹相比,采用优化后的轨迹,通道型面余量差从4.5 mm减小到2.0 mm,叶片上采样点所对应的叶盆与叶背的余量差从3.5 mm减小到1.2 mm,说明该轨迹优化方法能够均匀通道型面的余量分布,优化了后续精加工工序的加工环境。

本文引用格式

徐庆, 朱荻, 徐正扬, 曲宁松 . 整体叶盘通道电解加工电极多维运动轨迹优化[J]. 航空学报, 2011 , 32(8) : 1548 -1554 . DOI: CNKI:11-1929/V.20110310.1712.004

Abstract

In order to improve the distribution uniformity of the channel finishing margin of a blisk channel,an optimization method of the cathode relative to the workpiece is presented. The influence of electrochemical machining (ECM) on cathode movement path is analyzed. The method optimizes the movement paths of the tool cathode on the blade tip and foot cylinder surfaces, and new paths are obtained by fitting the midpoints of vertical lines into the splines based on the sample points of the old paths. Experimental investigations are carried out in order to verify the rationality of the optimized paths. The result reveals that the margin difference of channel surfaces can be decreased to 2.0 mm with the new paths, in contrast to 4.5 mm with the old paths. The margin difference of the concave and convex airfoil surfaces decreases to 1.2 mm from 3.5 mm at the corresponding area of the blade sampling point. It can be concluded that the new paths are well designed and can make the margin distribution of channel surfaces uniform to a certain extent, and the process environment of subsequent finishing is thus optimized.

参考文献

[1] 任军学, 田卫军, 田荣鑫, 等. 开式整体叶盘通道侧铣粗加工技术的研究[J]. 机械科学与技术, 2008, 27(10): 1220-1224. Ren Junxue, Tian Weijun, Tian Rongxin, et al. A study of the rough milling technique of blisk-tunnel[J]. Mechanical Science and Technology, 2008, 27(10): 1220-1224. (in Chinese)

[2] 朱永伟, 徐家文. 大扭曲叶片整体涡轮电解加工工艺研究[J]. 宇航材料工艺, 2005(6): 51-55. Zhu Yongwei, Xu Jiawen. Study on electrochemical machining of integral turbine with big-twisted blades[J]. Aerospace Materials & Technology, 2005(6): 51-55. (in Chinese)

[3] 赵万生, 詹涵普, 王刚. 涡轮叶盘加工技术[J]. 航空精密制造技术, 2000, 36(5): 1-5. Zhao Wansheng, Zhan Hanpu, Wang Gang. Machining technology used in turbine blisk[J]. Aviation Precision Manufacturing Technology, 2000, 36(5): 1-5. (in Chinese)

[4] 肖波, 李彬, 罗大新. 钛合金整体叶轮的高效加工[J]. 航天制造工艺, 2007, 8(4): 52-55. Xiao Bo, Li Bin, Luo Daxin. Study on high efficiency machining of titanium alloy integral impeller[J]. Aerospace Manufacturing Technology, 2007, 8(4): 52-55. (in Chinese)

[5] Risko D G, Davydov A D. Manufacturing applications and productivity limitations of electrochemical machining[J]. Manufacturing Science and Engineering, 1993, 64: 701-711.

[6] 徐正扬, 朱荻, 朱栋. 发动机叶片电解加工变间隙阴极修正法[J]. 机械工程学报, 2009, 45(9): 187-192. Xu Zhengyang, Zhu Di, Zhu Dong. Variable gap amendment of cathode for the electrochemical machining of turbine blade[J]. Journal of Mechanical Engineering, 2009, 45(9): 187-192. (in Chinese)

[7] 李志永, 朱荻, 王蕾. 电解加工发动机叶片阴极进给方向的优化[J]. 航空学报, 2003, 24(6): 563-567. Li Zhiyong, Zhu Di, Wang Lei. Optimization of cathode feed direction in electrochemical machining of turbine blades[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 563-567. (in Chinese)

[8] Elman L A, Burgess S M, Ding Z R. Manufacture of complexly shaped articles using an automated design technique: US, 6340424 B1. 2002-01-22.

[9] Schmidt G. ECM-machine: US, 7501049 B2. 2009-03-10.

[10] Goshorn D A, Crall D W. Blisk: US, 6454535 B1. 2002-09-24.

[11] 徐家文, 朱永伟, 胡平旺, 等. 整体叶轮的数控电解加工及其在航天制造中的应用前景[J]. 宇航材料工艺, 2003(1): 13-17. Xu Jiawen, Zhu Yongwei, Hu Pingwang, et al. Numerically controlled electrochemical machining of the integrated impellers and its application in future aerospace manufacturing[J]. Aerospace Materials & Technology, 2003(1): 13-17. (in Chinese)

[12] Lamphere M S, Graham J S, Robertson R S. Tandem blisk electrochemical machining: US, 7204926 B2. 2007-04-17.

[13] 朱永伟, 徐家文, 胡平旺. 数控展成电解加工整体叶轮的研究与应用[J]. 航空学报, 2001, 22(4): 376-378. Zhu Yongwei, Xu Jiawen, Hu Pingwang. Study and application of NC-electrochemical contour evolution machining integral impeller[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4), 376-378. (in Chinese)

[14] 宗殿瑞, 宋文臣, 刘朋振. 最小二乘法应用探讨[J]. 青岛化工学院学报, 1998, 19(3): 296-301. Zong Dianrui, Song Wenchen, Liu Pengzhen. Application of least square method[J]. Journal of Qingdao Institute of Chemical Technology, 1998, 19(3): 296-301. (in Chinese)

[15] 王焱. 复合加工技术在航空结构件制造中的应用[J]. 航空制造技术, 2009(12): 40-43. Wang Yan. Application of complex machining technology in structure component manufacturing of aviation industry[J]. Aeronautical Manufacturing Technology, 2009(12): 40-43. (in Chinese)
文章导航

/