针对航空发电机剩余使用寿命难以准确预测的问题,提出一种基于遗传算法(GA)优化的自回归与移动平均(ARMA)模型。运用航空发电机寿命专用试验平台,对某型航空发电机寿命进行长期试验,获取该航空发电机寿命相关数据。深入分析寿命试验数据,并对其建立ARMA模型。在此基础上,采用遗传算法对ARMA模型的阶数进行优化,分别采用ARMA模型与经遗传算法优化后的ARMA模型对航空发电机的使用寿命进行预测研究。结果表明,优化前后两种ARMA模型均可对航空发电机的使用寿命实现预测效能。优化前ARMA模型对航空发电机寿命预测的平均相对误差为4.33%;而经遗传算法优化后,ARMA模型预测的平均相对误差仅为2.26%,能更准确预测航空发电机的使用寿命,具有很好的工程应用价值。
To improve the aero-generator life prediction accuracy, an optimized auto-regressive and moving average (ARMA) model based on the genetic algorithm(GA) is presented. A specific experimental platform is used to perform long-term life prediction experiments on a certain type of aero-generator and collect the related test data. After a thorough analysis of these test data, a corresponding ARMA model is designed, and the genetic algorithm is used to carry on the exponent number optimization of the model. Then the original and the optimized ARMA models are used respectively to conduct life prediction research on the service life of the aero-generator. The result shows that these two models can realize the function of predicting the service life of an aero-generator. The average relative prognostic error of the ARMA model after the optimization is 2.26%, which is less than 4.33%, the error of the original model without optimization. Thus a conclusion can be drawn that the optimized ARMA model can predict the service life of an aero-generator more accurately and this model may find wide application in engineering practice.
[1] 孙博, 康锐, 张叔农. 基于特征参数趋势进化的故障诊断和预测方法[J]. 航空学报, 2008, 29(2): 393-398. Sun Bo, Kang Rui, Zhang Shunong. An approach to diagnostics and prognostics based on evolutionary feature parameters[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 393-398. (in Chinese)
[2] Ly C, Tom K, Byington C S, et al. Fault diagnosis and failure prognosis for engineering systems: a global perspective//5th Annual IEEE Conference on Automation Science and Engineering. 2009: 108-115.
[3] Carlo G. Subset ARMA model identification using genetic algorithms[J]. Journal of Time Series Analysis, 2000, 21(5): 559-570.
[4] 高海龙, 张国立. 基于遗传神经网络的负荷预测方法[J]. 微计算机信息, 2009, 25(9-1): 189-190. Gao Hailong, Zhang Guoli. A load forecasting method based on GNN[J]. Microcomputer Information, 2009, 25(9-1): 189-190. (in Chinese)
[5] Goldberg D. Genetic algorithms in search optimization and machine learning[M]. MA: Addison-Wesley, 1989.
[6] Saqlain A, He L S. Optimization and sizing for propulsion system of liquid rocket using genetic algorithm[J]. Chinese Journal of Aeronautics, 2007(20): 40-46.
[7] Ives A, Abbott K C, Ziebarth N L. Analysis of ecological time series with ARMA(p,q) model[J]. Ecology, 2010, 91(3): 858-871.
[8] 韩路跃, 杜行检. 基于MATLAB的时间序列建模与预测[J]. 计算机仿真, 2005, 22(4): 105-107. Han Luyue, Du Xingjian. Modeling and prediction of time series based on MATLAB[J]. Computer Simulation, 2005, 22(4): 105-107. (in Chinese)
[9] Zhao S T, Pan L L, Li B S. Fault diagnosis and trend forecast of transformer based on acoustic recognition//The third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. 2008: 1371-1374.
[10] 何书元. 应用时间序列分析[M]. 北京: 北京大学出版社, 2003年. He Shuyuan. Applied time series analysis[M]. Beijing: Peking University Press, 2003. (in Chinese)
[11] Mohammadi K, Eslami H R, Kahawita R. Parameter estimation of an ARMA model for river flow forecasting using goal programming[J]. Journal of Hydrology, 2006, 331(1-2): 293-299.
[12] Song S K, Gorla N. A genetic algorithm for vertical fragmentation and access path selection[J]. The computer Journal, 2000, 43(1): 81-92.
[13] Wang S H, He R. A hybrid real-parameter genetic algorithm for function optimization[J]. Advanced Engineering Informatics, 2006, 20(1): 7-21.
[14] Han K H, Kim J H. On setting the parameters of quant urn-inspired evolutionary algorithm for practical applications//Proceedings of the 2003 IEEE Congress on Evolutionary Computation. 2003: 178-184.
[15] 周玉辉, 康锐. 基于退化失效模型的旋转机械寿命预测方 法[J]. 核科学与工程, 2009, 29(2): 146-151. Zhou Yuhui, Kang Rui. Degradation model and application in life prediction of rotating-mechanism[J]. Chinese Journal of Nuclear Science and Engineering, 2009, 29(2): 146-151. (in Chinese)