固体力学与飞行器总体设计

复合材料波纹板剪切载荷作用下的屈曲试验与分析

展开
  • 中国飞机强度研究所, 陕西 西安 710065
吴存利(1963-) 男,博士,研究员。主要研究方向:计算力学、结构强度。 Tel: 029-88268027 E-mail: wucunli@yahoo.com

收稿日期: 2010-07-06

  修回日期: 2010-12-08

  网络出版日期: 2011-08-19

基金资助

航空科学基金(20080923004)

Buckling Investigation of Composite Corrugated Panel Subject to Shear Loads

Expand
  • Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2010-07-06

  Revised date: 2010-12-08

  Online published: 2011-08-19

摘要

复合材料波纹板稳定性是飞机机翼结构设计需要考虑的重要方面,是目前飞机结构设计中的一大难点。为了建立波纹板屈曲的数值分析方法,对复合材料波纹板在剪切载荷作用下的屈曲进行试验、工程算法和有限元方法研究。通过试验,探索了3种不同波长的复合材料波纹板的屈曲载荷和破坏载荷;采用工程算法和有限元方法计算了8种不同波长的复合材料波纹板屈曲载荷,并与试验结果进行了比较。在试验和分析研究的基础上,初步提出了对复合材料波纹板屈曲载荷计算值进行修正的修正因子。结果表明,波纹板屈曲载荷的工程计算值大于试验值,而有限元计算值小于试验值,且随着波长的增大,两种方法相对于试验结果的计算误差越来越大。计算结果也表明,所提出的计算载荷修正因子可以有效地对有限元计算值和工程计算值进行修正,使修正后的计算值接近于试验值。

本文引用格式

吴存利, 段世慧, 李新祥 . 复合材料波纹板剪切载荷作用下的屈曲试验与分析[J]. 航空学报, 2011 , 32(8) : 1453 -1460 . DOI: CNKI:11-1929/V.20110509.1152.001

Abstract

It is of great significance and difficulty to ensure the stability of the composite corrugated panels in the design of aircraft wing structures. The main purpose of this paper is to establish a numerical method for the buckling of composite corrugated panel under shear loads via experiments and computations. The buckling and failure loads are examined by experiments for corrugated panels with three different wave lengths. Then, the buckling loads for eight different wave lengths are explored by the engineering method and the finite element method and are compared with experimental data. Finally the correction factors for the computational buckling loads are proposed. Results reveal that compared with experimental data, the buckling loads are greater than the experimental loads with the engineering method, while smaller with the finite element method. The results also show the longer the wave length is, the bigger the error is for the computational buckling loads. In addition, the results show that the computational buckling loads can be approximated to experimental loads by the proposed correction factors, which means that the correction factors are feasible and efficient.

参考文献

[1] Seydel V E. Shear buckling of corrugated plates[M]. Jahrbuch: Deutsche Versuchsanstalt für Luftfahrt, 1931: 233-245.

[2] Stroud W J. Elastic constants for bending and twisting of corrugation-stiffened panels. NASA-TR-R-166, 1963.

[3] Wu L H, Libove C. Theoretical study of corrugated plates: shearing of a corrugated plate with curvilinear corrugations. NASA-CR-2080, 1972.

[4] Peterson J P, Card M F. Investigation of the buckling strength of corrugated webs in shear. NASA-TN-D424, 1960.

[5] Luo S, Suhling J C. The bending stiffnesses of corrugated board//The Winter Annual Meeting of ASME: Mechanics of Cellulosic Materials. 1992: 15-26.

[6] Liang Y H, Louca L A, Hobbs R E. A simplified method in the static plastic analysis of corrugated steel panels[J]. Journal of Strain Analysis, 2005, 41(2): 135-149.

[7] Liew K M, Peng L X, Kitipornchai S. Buckling analysis of corrugated plates using a mesh-free Galerkin method based on the first-order shear deformation theory[J]. Computation Mechanics, 2006, 38(1): 61-75.

[8] 高轩能, 吴丽丽. 波纹钢屋盖结构板件相关屈曲的试验研究与分析[J]. 实验力学, 2004, 19(1): 113-119. Gao Xuanneng, Wu Lili. Experimental study on interactive local buckling of corrugated steel arch roof [J]. Journal of Experimental Mechanics, 2004, 19(1): 113-119. (in Chinese)

[9] 陈华,王小平,杨安蓉. 拱形波纹钢屋盖小波纹板等效弯曲刚度试验研究[J]. 钢结构, 2003, 18(3): 23-25. Chen Hua, Wang Xiaoping,Yang Anrong. Experimental study of equivalent bending rigidities of small corrugated plates of metal corrugated arch roof[J]. Steel Construction, 2003, 18(3): 23-25. (in Chinese)

[10] 吴存利,段世慧,孙侠生. 复合材料波纹板刚度工程计算方法及其在结构分析中的应用[J]. 航空学报, 2008, 29(6): 1570-1575. Wu Cunli,Duan Shihui,Sun Xiasheng. Technique for calculation of composite corrugated plate stiffness and its application in structure finite element analysis[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1570-1575. (in Chinese)

[11] 陈一坚. 飞行器结构强度分析手册(二)[M]. 西安:航空航天工业集团公司第一飞机设计研究院,1989. Chen Yijian. Strength handbook for aircraft structure: Book 2[M]. Xi'an: The First Aircraft Design Institute, Aviation Industy Coperation of China, 1989. (in Chinese)

[12] 《飞机设计手册》总编委会. 飞机设计手册:第9册[M]. 北京:航空工业出版社,2001. Handbook of Aircraft Design Editorial Committee. Handbook of aircraft design:Book 9[M]. Beijing: Aviation Industry Press, 2001. (in Chinese)

[13] Seide P, Weingarten V I, Peterson J P. Buckling of thin-walled circular cylinders. NASA-SP-8007, 1968.

[14] Collier C. Executive summary, implemented solution, and industry applications. AFRI-VA-WP-TR-2005-3034, 2005.

[15] Collier C. Consistent structural integrity and efficient certification with analysis. Volume 2: Detailed report on innovative research developed, applied, and commercially available. AFRI-VA-WP-TR-2005-3034, 2005.

[16] Collier C. Consistent structural integrity and efficient certification with analysis. Volume 3: Appendices of verification and validation examples, correlation factors, and failure criteria. AFRI-VA-WP-TR-2005-3034, 2005.
文章导航

/