采用液态金属冷却定向凝固方法制备了Ni-44Ti-5Al-2Nb-1Mo(原子分数, %)合金,分析了加热温度为1 550 ℃,抽拉速率为0.3、 1.2、 3.0、 6.0、 18.0 mm/min 时的定向凝固组织特征。结果表明,定向凝固没有改变合金的相组成,但改变了组成相的形态。定向凝固组织均由初生的NiTi相与晶间析出的Ti2Ni相、富Nb的Ti2Ni相组成,与铸态组织相同。定向凝固后,NiTi相发生了强烈的[100]择优取向。随着抽拉速率的增大,NiTi相沿[100]择优取向趋势增强,固液界面形态由发达的树枝晶变为胞状树枝晶,NiTi枝晶及析出相Ti2Ni、富Nb的Ti2Ni明显细化。定向排列的NiTi枝晶组织和分布在晶间的细小析出相将有益于合金高温强度和室温塑性的提高。
Alloy Ni-44Ti-5Al-2Nb-1Mo (atomic fraction,%) is directionally solidified (DS) at a constant temperature (1 550 ℃) in a range of withdrawal rates (0.3,1.2,3.0,6.0,18.0 mm/min) by liquid metal cooling technology. An investigation of the microstructural characteristics indicates that the DS processes do not affect the phase composition, but they do change the phase morphology of the alloy. The phase composition of DS samples remains the same as that of the as-cast specimen, which is composed of NiTi (B2), Ti2Ni and Nb-rich Ti2Ni phases. After DS, [100] becomes the preferred orientation in the NiTi matrix. With the withdrawal rate increasing, orientation [100] is significantly enhanced, and the solid/liquid interface morphology changes from coarse dendrite to cellular dendrite. At the same time, both the primary dendrite arm of NiTi and the precipitates are greatly refined. The directional dendrites and tiny precipitation distribution will be beneficial to the high temperature strength and room temperature ductility of the alloy.
[1] Otsuka K, Wayman C M. Shape memory materials[M]. London: Cambridge University Press, 1998: 1.
[2] Duerig T W, Melton K N, Proft J L. Engineering aspects of shape memory alloys[M]. London: Btterworth-Heinemann, 1990: 130.
[3] Warren P, Murakami Y, Koizumi Y, et al. Phase separation in NiTi-Ni2TiAl alloy system[J]. Materials Science and Engineering A, 1997, 223(1-2): 36-41.
[4] Jung J, Ghosh G, Olson G B. A comparative study of precipitation behavior of Heusler phase (Ni2TiAl) from B2-TiNi in Ni-Ti-Al and Ni-Ti-Al-X (X=Hf, Pd, Pt, Zr) alloys [J]. Acta Materialia, 2003, 51(20): 6341-6357.
[5] Huneau B, Rogl P, Zeng K, et al. The ternary system Al-Ni-Ti Part 1: isothermal section at 900 ℃; Experimental investigation and thermodynamic calculation[J]. Intermetallics, 1999, 7(12): 1337-1345.
[6] 徐舰, 赵新青, 宫声凯, 等. Nb对于TiNiAl高温氧化行为的影响[J]. 金属学报, 2006, 42(8): 820-826. Xu Jian, Zhao Xinqing, Gong Shengkai, et al. Effect of Nb on the high temperature oxidation behavior of TiNiAl alloys[J]. Acta Metallurgica Sinica, 2006, 42(8): 820-826. (in Chinese)
[7] 孟令杰, 李岩, 赵新青, 等. Nb对富钛TiNiAl金属间化合物强化机制的影响[J]. 航空学报,2007,28(5): 1206-1209. Meng Lingjie, Li Yan, Zhao Xinqing, et al. Effect of Nb on strengthening mechanism of Ti-rich TiNiAl intermetallics[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5): 1206-1209. (in Chinese)
[8] 孟令杰. NiTi-Al高温结构材料的研究. 北京:北京航空航天大学材料科学与工程学院, 2006. Meng Lingjie. Study of NiTi-Al based high temperature structural materials. Beijing: School of Materials Science and Engineering, Beihang University, 2006. (in Chinese)
[9] 赵新青, 徐惠彬, 李岩, 等. 一种钛镍铝钼高温合金材料: 中国, 200510053910. 2006-07-19. Zhao Xinqing, Xu Huibin, Li Yan, et al. A Ti-Ni-Al-Mo high temperature alloy material: China, 200510053910. 2006-07-19. (in Chinese)
[10] 张花蕊, 高明, 唐晓霞, 等. 定向凝固条件下Ti-47Al-2Cr-2Nb合金与Y2O3陶瓷的相互作用[J]. 金属学报, 2010, 46(7): 890-896. Zhang Huarui, Gao Ming, Tang Xiaoxia, et al. Interaction between Ti-47Al-2Cr-2Nb alloy and Y2O3 ceramic during directional solidification[J]. Acta Metallurgica Sinica, 2010, 46(7): 890-896. (in Chinese)
[11] 杨亚卓, 赵新青, 孟令杰. 低Nb含量Ni-Ti-Nb形状记忆合金的组织及相变特征[J]. 金属学报, 2005, 41(6): 627-632. Yang Yazhuo, Zhao Xinqing, Meng Lingjie. Microstructure and transformation behavior of Ni-Ti-Nb shape memory alloys with low Nb content[J]. Acta Metallurgica Sinica, 2005, 41(6): 627-632. (in Chinese)
[12] 傅恒志, 郭景杰, 刘林, 等. 先进材料定向凝固[M]. 北京: 科学出版社, 2008: 566-569. Fu Hengzhi, Guo Jingjie, Liu Lin, et al. Directional soli-dification and processing of advanced materials[M]. Beijing: Science Press, 2008: 566-569. (in Chinese)