陆地的刚体表面在机载雷达的任意相对运动下具有几何不变性,基于此约束可利用雷达距离像中提取出的地面多个强散射点的一维距离数据,重建出地表的三维信息以及载机未知的运动轨迹。鉴于现有基于雷达远场假设的重建方法无法适用于具有较大近场误差的地面目标重建的问题,提出一种基于雷达近场几何模型的优化重建方法,采用非线性优化方法实现了对重建参数的捆绑调整。仿真结果表明,此算法可使近场目标的重建精度得到显著的提升,由此实现了机载单天线雷达任意未知三维运动下对地表三维信息的高精度几何重构。
Under the arbitrary relative motion of airborne radar, the rigid ground surface holds the geometry invariance. Based on this restriction, the 3D terrain information and the unknown motion path of the carrier-aircraft can be reconstructed using the 1D range data of some strong scatterers extracted from the radar range image. Considering the problem that current reconstruction algorithms based on far-field assumption are incompetent for reconstructing the ground target which involves larger near-field range errors, an optimal reconstruction algorithm based on near-field model of the radar range measurement is proposed and it achieves the bundle adjustment for the reconstructed parameters by utilizing the nonlinear optimization. The simulations verify that, the reconstructed precision of this algorithm is of remarkable improvement for near-field target and, hence, the high precision geometric reconstruction for the terrain’s 3D information under the arbitrary unknown 3D motion of the airborne single-antenna radar is realized.
[1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 229-344. Bao Zheng, Xing Mengdao, Wang Tong. Radar image technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 229-344. (in Chinese)
[2] Xiang Z, Wang K Z, Liu X Z. A model-spectrum-based flattening algorithm for airborne single-pass SAR interferometry[J]. IEEE Geosciences and Remote Sensing Letters, 2009, 6(2): 307-311.
[3] Wang G Y, Xia X G, Chen V C. Three dimensional ISAR imaging of maneuvering targets using three receivers[J]. IEEE Transactions on Image Processing, 2001, 10(3): 436-448.
[4] Xu X J, Narayanan R M. Three dimensional interferometric ISAR imaging for target scatterring diagnosis and modeling[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1094-1102.
[5] Mayhan J T, Burrows M L, Cuomo K M, et al. High resolution 3D snapshot ISAR imaging and feature extraction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 630-642.
[6] 任双桥, 刘永祥, 黎湘, 等. 基于多姿态角下一维距离像的雷达目标三维成像[J]. 电子学报, 2005, 33(6): 1088-1090. Ren Shuangqiao, Liu Yongxiang, Li Xiang, et al. Radar target 3-D imaging based on multi-aspect range profiles[J]. Acta Electronica Sinica, 2005, 33(6): 1088-1090. (in Chinese)
[7] Bryant M L, Gostin L L, Soumekh M. 3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 211-227.
[8] Xing M D, Wang G Y, Bao Z. A matched-filter-bank-based 3D imaging algorithm for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2106-2113.
[9] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 230-274. Huang Peikang, Yin Hongcheng, Xu Xiaojian. Radar target characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005: 230-274. (in Chinese)
[10] Stuff M, Sanchez P, Biancala M. Extraction of three-dimensional motion and geometric invariants[J]. Multidimensional Systems and Signal Processing, 2003, 14(1-3): 161-181.
[11] Ferrara M, Arnold G, Stuff M. Shape and motion reconstruction from 3D-to-1D orthographically projected data via object-image relations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(10): 1906-1912.
[12] 周剑雄. 光学区雷达目标三维散射中心重构理论与技术. 长沙: 国防科学技术大学, 2008: 64-66. Zhou Jianxiong. Theory and technology on reconstructing 3D scattering centers of radar targets in optical region. Changsha: National University of Defense Technology, 2008: 64-66. (in Chinese)
[13] 刘永祥, 吕玉增, 黎湘, 等.多姿态角下的目标散射中心关联与成像方法研究[J]. 信号处理, 2008, 24(2): 168-171. Liu Yongxiang, Lv Yuzeng, Li Xiang, et al. Scattering centers association and imaging based on multi-aspect measurement[J]. Signal Processing, 2008, 24(2): 168-171. (in Chinese)
[14] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. London: Cambridge University Press, 2000: 434-497.
[15] Triggs B, McLauchlan P F, Hartley R I. Bundle adjustment—a modern synthesis//Proceedings of the Inter- national Workshop on Vision Algorithms: Theory and Practice. London: Springer-Verlag, 2000: 298-375.