电子与自动控制

基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划

展开
  • 国防科学技术大学 机电工程与自动化学院, 湖南 长沙 410073
张煜(1981- ) 男,博士研究生。主要研究方向:飞行器任务规划与智能控制。 Tel: 0731-84576495 E-mail: redarmy_zy@163.com 陈璟(1972- ) 男,博士,副教授。主要研究方向:人工智能与任务规划。 Tel: 0731-84576495 E-mail: chenjing001@vip.sina.com

收稿日期: 2010-11-02

  修回日期: 2010-12-08

  网络出版日期: 2011-07-23

Air-to-ground Weapon Delivery Trajectory Planning for UCAVs Using Gauss Pseudospectral Method

Expand
  • College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China

Received date: 2010-11-02

  Revised date: 2010-12-08

  Online published: 2011-07-23

摘要

研究无人作战飞机(UCAV)在对地攻击阶段的武器投放轨迹规划问题。针对传统方法在处理复杂的飞行器运动学、动力学约束上存在的困难,提出了一种基于Gauss伪谱法(GPM)的求解策略。首先,为了最大程度地逼近实际飞行环境,对UCAV的气动力特性、发动机推力特性、油耗特性及大气环境特性进行了高精度拟合,并充分考虑了飞行器各种飞行性能约束和战场环境约束;其次,采用快速求解算法计算制导炸弹的可投放区(LAR)包络,将其作为终端约束来确保攻击的命中概率;然后利用GPM将轨迹规划问题转化为非线性规划问题,在此基础上采用序列二次规划(SQP)算法求得最优解。为了提升计算效率及降低初值设置的难度,设计了多步迭代优化策略。对时间最优和燃料最优轨迹优化问题进行了仿真验证,结果表明该方法能够以较高的精度和速度生成真实可行的最佳武器投放轨迹。

本文引用格式

张煜, 张万鹏, 陈璟, 沈林成 . 基于Gauss伪谱法的UCAV对地攻击武器投放轨迹规划[J]. 航空学报, 2011 , 32(7) : 1240 -1251 . DOI: CNKI:11-1929/V.20101228.1334.003

Abstract

This paper studies the issue of generating optimal air-to-ground guided bomb delivery trajectories for unmanned combat aerial vehicles (UCAVs), and proposes a strategy based on the Gauss pseudospectral method (GPM) to deal with difficulties of traditional methods in processing vehicle kinematic and dynamic constraints. First, a high-fidelity 3-DOF nonlinear model of a UCAV is built which takes into consideration its aerodynamic characteristics, thrust and fuel consumption characteristics and atmospheric characteristics. Second, a fast algorithm is developed for searching the envelope of a guided bomb’s launch acceptable region (LAR), which is expressed as a final constraint in order to ensure attack accuracy. Third, GPM transforms the trajectory planning problem into a nonlinear programming problem, which can be solved using a sequential quadratic programming (SQP) algorithm. To improve computation efficiency and reduce the complexity of initial guess, a multistage iterative optimization strategy is presented. Finally, numerical examples for a minimum time-consumption trajectory as well as a minimum fuel-consumption trajectory are used to demonstrate the merits of the proposed algorithm. The results show that the algorithm can generate both feasible and optimal weapon delivery trajectories.

参考文献

[1] Hurni M A, Sekhavat P, Ross I M. Autonomous path planning using real-time information updates. AIAA-2008-6305, 2008.

[2] Shimoda S, Kuroda Y, Iagnernrna K. Potential field navigation of high speed unmanned ground vehicles on uneven terrain//International Conference on Robotics and Automation. 2005: 2839-2844.

[3] Kim S H, Bhattacharya R. Motion planning in obstacle rich environments[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(7): 433-450.

[4] Lu W C, Mora-Camino F, Achaibou K. A flatness based flight guidance control using neural networks// IEEE the 24th Digital Avionics Systems Conference. 2005: 6.C.1.1-6.C.1.7.

[5] Nikolos I K, Valavanis K P. Evolutionary algorithm based offline/online path planner for UAV navigation[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2003, 33(6): 898-912.

[6] Foo J L, Knutzon J, Kalivarapu V, et al. Path planning of unmanned aerial vehicles using B-splines and particle swarm optimization[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(4): 271-290.

[7] Kaneshige J, Krishnakumar K. Artificial immune system approach for air combat maneuvering// Proceedings of the International Society for Optical Engineering. 2007, 6560: 656009.

[8] Frazzoli E, Dahleh M A, Feron E. Real-time motion planning for agile autonomous vehicles[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 116-129.

[9] Kuwata Y, Karaman S, Teo J, et al. Real-time motion planning with applications to autonomous urban driving[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1105-1118.

[10] Lewis L P R. Rapid motion planning and autonomous obstacle avoidance for unmanned vehicles. Monterey: Naval Postgraduate School, 2006.

[11] Williams P. Three-dimensional aircraft terrain-following via real-time optimal control[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(4): 1201-1205.

[12] Bryson A E, Desal M N, Hoffman W C. Energy-state approximation in performance estimation of supersonic aircraft[J]. Journal of Aircraft, 1969, 6(6): 481-487.

[13] 耿丽娜. 制导炸弹投放区计算研究. 长沙: 国防科学技术大学, 2009. Geng Lina. Study on release region calculation for guided bombs. Changsha: National University of Defense Technology, 2009. (in Chinese)

[14] West W J. Developmental testing of a laser-guided bomb simulation. AIAA-2008-1629, 2008.

[15] Siewert V L, Sussingham J C. 6-DOF enhancement of precision guided munitions testing. AIAA-1997-5522, 1997.

[16] Wilson S A, Vuletich I J, Fletcher D J, et al. Guided weapon danger area & safety template generation—a new capability. AIAA-2008-7123, 2008.

[17] Betts J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207.

[18] Fahroo F, Ross I M. Advances in pseudospectral methods for optimal control. AIAA-2008-7309, 2008.

[19] Benson D A, Huntington G T, Thorvaldsen T P, et al. Direct trajectory optimization and costate estimation via an orthogonal collocation method[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1435-1440.

[20] Huntington G T, Benson D, Rao A V. A comparison of accuracy and computational efficiency of three pseudospectral methods. AIAA-2007-6405, 2007.

[21] Benson D. A Gauss pseudospectral transcription for optimal control. Bostom: Massachusettes Institute of Technology, 2004.
文章导航

/