以框架角受限的金字塔构型控制力矩陀螺(CMG)为执行机构,研究了航天器欧拉姿态机动控制问题。考虑控制力矩及航天器角速度约束等因素,对已有的姿态机动控制律进行了改进,使其能实现绕欧拉轴的大角度姿态机动。同时考虑力矩陀螺框架角受限情况,通过适当加入空转指令对框架角进行重构,设计了复合控制形式的控制力矩陀螺操纵律,并通过过渡域对切换过程进行削抖。数值仿真表明,所设计的复合控制操纵律能有效通过框架角重构发挥控制力矩陀螺控制能力,且姿态机动控制律能保证系统的欧拉旋转。
This paper deals with the eigenaxis attitude maneuver of a spacecraft actuated by a control moment gyroscope (CMG) with gimbal angle constraints. Taking into consideration such as constraints actuator saturation and slew rate of spacecraft, some modifications are made to the previous attitude maneuver algorithm to ensure it can perform large angle eigenaxis maneuver. By introducing the proper magnitude of null motion to recombine the gimbal angles, a composite control steering logic is proposed for the CMG system with gimbal angle constraints, and a transform domain is also devised to eliminate chattering. Numerical simulations show that the proposed composite control steering logic can effectively utilize the control capacity of a CMG by recombining gimbal angles, and, combined with the attitude maneuver algorithm, realize eigenaxis rotation.
[1] Bilimoria K D, Wie B. Time-optimal three-axis reorientation of a rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(3): 446-452.
[2] Wie B, Weiss H, Apapostathis A. Quaternion feedback regulator for spacecraft eigenaxis rotations[J]. Journal of Guidance, Control, and Dynamics, 1989, 12(3): 375-380.
[3] Steyn W H. Near-minimum-time eigenaxis rotation maneuvers using reaction wheels[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1184-1189.
[4] Steyn W H. A dual-wheel multi-mode spacecraft actuator for near-minimum-time large angle slew maneuvers[J]. Aerospace Science and Technology, 2008, 12(7): 545-554.
[5] Wie B, Lu J. Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6): 1372-1379.
[6] Wie B, Heiberg C, Bailey D. Rapid multitarget acquisition and pointing control of agile spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 96-104.
[7] Kurokawa H. A geometric study of single gimbal control moment gyros—singularity and steering law. Report of Mechanical Engineering Laboratory, No. 175, 1998.
[8] Paradiso J. Global steering of single gimballed control moment gyroscopes using a directed search[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(5): 1236-1244.
[9] Vadali S R, Oh H S, Walker S R. Preferred gimbal angles for single gimbal control moment gyros[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1090-1095.
[10] Kurokawa H. Constrained steering law of pyramid-type control moment gyros and ground tests[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3): 445-449.
[11] Bedrossian N S, Paradiso J, Bergmann E V, et al. Steering law design for redundant single-gimbal control moment gyroscope[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(6): 1083-1089.
[12] Kurokawa H. Survey of theory and steering laws of single-gimbal control moment gyros[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1331-1340.
[13] Ford K, Hall C. Singular direction avoidance steering for control-moment gyros[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 648-656.
[14] Wie B. Singularity escape/avoidance steering logic for control moment gyro systems[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 948-956.
[15] Lappas V, Wie B. Robust control moment gyroscope steering logic with gimbal angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(5): 1662-1666.
[16] Tekinalp O, Elmas T, Yavrucuk I. Gimbal angle restricted control moment gyroscope clusters //4th International Conference on Recent Advances in Space Technologies. 2009: 585-590.
[17] Tekinalp O, Yavuzoglu E. A new steering law for redundant control moment gyroscope clusters[J]. Aerospace Science and Technology, 2005, 9(7): 626-634.