雷达信号波形的射频(RF)隐身性能是雷达系统能否适应现代战场环境的重要因素,雷达射频隐身信号波形设计是现代雷达系统设计中的重要课题。首先,在介绍随机噪声信号雷达原理的基础上,基于Schleher截获因子阐述了噪声调制连续波雷达信号波形的射频隐身特性。然后,分析了高斯噪声相位和频率调制连续波雷达输出自相关函数和高斯噪声相关系数之间的关系,通过仿真研究了高斯噪声均方根(RMS)的不同取值对高斯噪声相位和频率调制连续波雷达信号波形射频隐身性能的影响。最后,构建了一种噪声调制对称三角线性调频连续波(STLFMCW)雷达信号波形,仿真表明该雷达信号波形具有良好的射频隐身特性,并且通过增加高斯噪声信号的带宽和自适应控制高斯噪声信号的功率水平可提高其射频隐身性能。研究表明,噪声调制连续波雷达信号波形是一种具有良好射频隐身特性的雷达信号波形。
To a radar system, the radio frequency (RF) stealth of radar signal waveform is one of the important factors in modern battlefield. RF stealth radar waveform design is an important issue in design of modern radar systems. First, the principle of random noise signal radar is introduced and its RF stealth of waveform is analyzed in theory based on the Schleher intercept factor. Second, the relationship is analyzed between the output autocorrelation function of the Gaussian noise phase and frequency modulated continuous wave radar and the correlation coefficient of Gaussian noise. The effect of different root mean square (RMS) of the Gaussian noise on the RF stealth of the Gaussian noise phase and frequency modulated continuous wave radar signal waveform is studied through simulation. Lastly, a Gaussian noise plus symmetrical triangular linear frequency modulation continuous wave (STLFMCW) radar signal waveform is constructed. The study shows that the RF stealth of the Gaussian noise plus STLFMCW radar signal waveform is good and its RF stealth performance can be improved by increasing the bandwidth and decreasing the power level of the Gaussian noise signal. The research shows that the noise modulated continuous wave radar signal waveform possesses good RF stealth characteristic.
[1] Skolnik M I. 雷达手册[M]. 王军, 林强, 米慈中, 等, 译. 2版. 北京: 电子工业出版社, 2003: 20-23. Skolnik M I. Radar handbook[M]. Wang Jun, Lin Qiang, Mi Cizhong, et al., translated. 2nd ed. Beijing: Publishing House of Electronics Industry, 2003: 20-23. (in Chinese)
[2] Taboada F L. Detection and classification of low probability of intercept radar signals using parallel filter arrays and higher order statistics. Monterey: Naval Postgraduate School, 2002.
[3] Wiley R G. 电子情报(ELINT)——雷达信号截获与分析[M]. 吕跃广, 译. 北京: 电子工业出版社,2008: 43-70. Wiley R G. ELINT: the interception and analysis of radar signals[M]. Lu Yueguang, translated. Beijing: Publishing House of Electronics Industry, 2008: 43-70. (in Chinese)
[4] Liu G S, Gu H, Su W M, et al. The analysis and design of modern low probability of intercept radar//Proceedings of 2001 CIE International Conference on Radar. 2001: 120-124.
[5] Schleher D C. Low probability of intercept radar//IEEE 1985 International Radar Conference. 1985: 346-349.
[6] Schleher D C. LPI radar: fact or fiction[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(5): 3-6.
[7] Stimson G W. Introduction to airborne radar[M]. 2nd ed. Raleigh: SciTech Publishing, Inc., 1998: 525-534.
[8] 李江源, 王建国, 杨建宇, 等. 超宽带雷达的低截获性分析[J]. 雷达科学与技术, 2005, 3(5): 266-270. Li Jiangyuan, Wang Jianguo, Yang Jianyu, et al. LPI analysis of UWB radar[J]. Radar Science and Technology, 2005, 3(5): 266-270. (in Chinese)
[9] 刘波. MIMO雷达正交波形设计及信号处理研究. 成都: 电子科技大学, 2008. Liu Bo. Research on generation of orthogonal waveform and signal processing for MIMO radar. Chengdu: University of Electronic Science and Technology of China, 2008. (in Chinese)
[10] 张杰. 基于MIMO体制的雷达LPI性能分析和应用[J]. 中国电子科学研究院学报, 2007, 2(4): 397-401. Zhang Jie. Radar’s LPI analysis and application based on MIMO system[J]. Journal of CAEIT, 2007, 2(4): 397-401. (in Chinese)
[11] Xu X J, Narayanan R M. Impact of different correlation receiving techniques on the imaging performance of UWB random noise radar//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. 2003: 4525-4527.
[12] Axelsson S R J. Noise radar using random phase and frequency modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2370-2384.
[13] Axelsson S R J. Noise radar for range/Doppler processing and digital beamforming using low-bit ADC[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2703-2720.
[14] Klipper H. Sensitivity of crystal video receivers with RF preamplification[J]. Microwave Journal, 1965, 8(8): 85-92.
[15] 陈明. 信息与通信中的随机过程[M]. 2版. 北京: 科学出版社, 2005: 114-115, 159-160. Chen Ming. Random process of information and communication engineering[M]. 2nd ed. Beijing: Science Press, 2005: 114-115, 159-160. (in Chinese)
[16] 张容权, 杨建宇, 熊金涛, 等. 对称三角线性调频连续波信号模糊函数分析[J]. 电子学报, 2004, 32(3): 353-356. Zhang Rongquan, Yang Jianyu, Xiong Jintao, et al. Analysis of ambiguity function of STLFMCW radar[J]. Acta Electronica Sinica, 2004, 32(3): 353-356. (in Chinese)
[17] 吴礼, 彭树生, 肖泽龙, 等. 对称三角线性调频连续波雷达信号多周期模糊函数分析[J]. 南京理工大学学报: 自然科学版, 2009, 33(1): 74-78. Wu Li, Peng Shusheng, Xiao Zelong, et al. Multi-period ambiguity function analysis of STLFMCW signals[J]. Journal of Nanjing University of Science and Technology: Natural Science, 2009, 33(1): 74-78. (in Chinese)
[18] Ko H H, Cheng K W, Su H J. Range resolution improvement for FMCW radars//Proceedings of European Radar Conference. 2008: 352-355.
[19] Fuller K L. To see and not be seen[J]. IEE Proceedings F Radar and Signal Processing, 1990, 137(1): 1-10.
[20] Liu G S, Gu H, Su W M, et al. Random signal radar—a winner both in the military and civilian operating environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 489-498.