正确制定无人机(UAV)自主控制等级,有利于了解中国无人机所处的自主控制水平,也有利于为中国无人机自主控制技术的发展提供正确的指导方向。鉴于无人机自主控制等级应该是由无人机代替有人驾驶飞机所能完成的驾驶员的智能行为等级这一认识,从人类智能活动的机理分析,给出了人类的智能控制行为等级。然后,在深入分析美国无人机自主控制等级划分的基础上,取消了不能归为智能活动的分布式控制等级(原等级划分的第8级),更改了自主等级命名以反应各等级的军事应用特征,进而提出了适于中国无人机技术发展的、更为合理的无人机自主控制等级以及各等级自主控制的技术内涵,提出了实现这些技术内涵的无人机自主控制系统结构及功能模块组成。
It is of great significance to establish a correct autonomous control level standard of unmanned aerial vehicles (UAVs) for understanding the present autonomous control level of UAV in China, and providing the guidance for research and development of Chinese UAV autonomous control technology. It is emphasized that the autonomous control levels of a UAV should be equivalent to the corresponding intelligent behavior level of a piloted airplane. Therefore, based on the analyses of human intelligent behavior mechanism, an autonomous control level of human being is given. Based on the detailed analyses of UAV autonomous control levels in USA, more suitable UAV autonomous control levels for China are suggested by canceling the original distributed autonomous level since it cannot belong to a specified intelligent action, and naming the autonomous levels according to the characteristics of military function. The technical supports of each autonomous level are analyzed; the structure of UAV autonomous control system and the function modules are established to support each UAV autonomous control level.
[1] Boskovic J D, Prasanth R, Mehra R K. A multi-layer autonomous intelligent control architecture for unmanned aerial vehicles[J]. Journal of Aerospace Computing, Information, and Communication, 2004, 1(12): 605-628.
[2] Pachter M, Chandler P R. Challenges of autonomous control[J]. IEEE Control Systems Magazine, 1998, 18(4): 92-97.
[3] Ge J H, Kacprzynski G J, Roemer M J. Automated contingency management design for UAVs. AIAA-2004-6464, 2004.
[4] Boskovic J D, Knoebel N, Moshtagh N, et al. Collaborative mission planning & autonomous control technology (CoMPACT) system employing swarms of UAVs. AIAA-2009-5653, 2009.
[5] Elston J, Frew E, Argrow B. Networked UAV command, control and communication. AIAA-2006-6465, 2006.
[6] Franke J L, Moffitt V Z, Housten D, et al. ICARUS: the construction of and lessons learned from a general-purpose autonomy system. AIAA-2009-2066, 2009.
[7] Redding J, Boskovic J D, Mehra R K. Heterogeneous cooperative control of multiple UAVs with collaborative as- signment and reactive motion planning. AIAA-2008-6794, 2008.
[8] Jameson S, Franke J, Szczerba R, et al. Collaborative autonomy for manned/unmanned teams//American Helicopter Society 61th Annual Forum Grapevine. 2005.
[9] Mersten G S. Airborne battle management system & autonomous operations UAV autonomy//The 20th Conference on Digital Avionics Systems. 2001, 1: 5A2/1-5A2/7.
[10] Cambone S A, Krieg K, Pace P, et al. Unmanned aircraft systems (UAS) roadmap, 2005-2030. Washington, D. C., USA: Office of the Secretary of Defense, 2005.
[11] Suresh M, Ghose D. Role of information and communication in redefining unmanned aerial vehicle autonomous control levels[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2010, 224(2): 171-197.
[12] Stengel R F. Toward intelligent flight control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(6): 1699-1717.
[13] Kihlstrom J F. The cognitive unconscious[J]. Science, 1987, 237(4821): 1445-1452.