采用压力梯度先增大后减小压升规律轴对称基准流场,结合流线追踪及截面渐变技术设计了矩形转圆形内收缩进气道模型,并采用4°斜楔模拟飞行器前体,对前体、进气道一体化模型进行了数值模拟和风洞试验,初步得到了该进气道的流场结构及总体性能。设计点和接力点的数值模拟结果表明该进气道可在马赫数Ma=4~6状态下正常工作,且具有良好的总体性能。在设计点Ma=6、正4°攻角状态进行的风洞试验表明,该进气道增压比为41.2,总压恢复达0.45,至少可抵抗200倍来流静压的反压。
With pressure gradient on the wall of the inlet’s basic flow field increasing at the front part then decreasing at the rear part, using streamline tracing and varying section techologies, a hypersonic inward turning inlet with rectangular to circular shape transition integrated into 4° wedge forebody, is designed and investigated with numerical simulation and experimental method. The flow field structure and performance of the inlet are primarily obtained. The simulation results of design points and take-over speeds indicate that this inlet can operate normally over the Mach number range of 4-6 and has good performance with 4° angle of attack. The inlet model is tested in a hypersonic wind tunnel at Mach number 6 with 4° angle of attack. And the experimental results indicate that the scaled inlet model’s total pressure recovery is 0.45. It can generate a compression ratio of 41.2 and withstand a back pressure ratio of 200 relative to tunnel static pressure.
[1] Busemann A. Die achsensymmetrische kegeligelleber schallstromung[J]. Luftfahrtforschung, 1942(19):137-144.
[2] Mlder S, Szpiro J. Busemman inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1303-1304.
[3] Billig F S, Johns H U, Laurel M. SCRAM—a supersonic combustion ramjet missile . AIAA-1993-2329, 1993.
[4] Billig F S, Baurle R A, Tam C J, et al. Design and analysis of streamline traced hypersonic inlets. AIAA-1999-4974, 1999.
[5] 孙波, 张堃元, 金志光. 流线追踪Busemann 进气道马赫数3.85 实验研究[J]. 航空动力学报, 2007, 22(3): 396-399. Sun Bo, Zhang Kunyuan, Jin Zhiguang. Experimental research of Mach 3.85 performance of a streamline traced hypersonic Busemann inlet[J]. Journal of Aerospace Power, 2007, 22(3): 396-399. (in Chinese)
[6] Sun B, Zhang K Y, Wang C P, et al. Investigation on a streamtraced hypersonic Busemann inlet[J]. Journal of Aerospace Engineering, 2009, 224(1): 57-63.
[7] Matthews A J, Jones T V. Design and test of a modular waverider hypersonic intake. AIAA-2005-3379, 2005.
[8] Barkmeyer D, Starkey R P, Lewis M J. Inverse waverider design for inward turning inlets. AIAA-2005-3915, 2005.
[9] Smart M K. Design of three-dimensional hypersonic inlets with rectangular to elliptical shape transition. AIAA-1998-960, 1998.
[10] You Y C, Liang D W. Cross section controllable hypersonic inlet design using streamline tracing and osculating axisymmetric concepts. AIAA-2007-5379, 2007.
[11] You Y C, Liang D W, Guo R W. High enthalpy wind tunnel tests of three-dimensional section controllable internal waverider hypersonic inlet. AIAA-2009-31, 2009.
[12] Taylor T M,VanWie D. Performance analysis of hypersonic shape—changing inlets derived from morphing streamline traced flowpaths. AIAA-2008-2635, 2008.
[13] Jacobsen L S, Tam C J, Behdadnia R. Starting and operation of a streamline-traced Busemann inlet at Mach 4. AIAA-2006-4508, 2006.
[14] Xiao Y B, Yue L J, Gong P, et al. Investigation on a truncated streamline-traced hypersonic Busemann inlet. AIAA-2008-2634, 2008.
[15] Drayna T W, Nompelis I, Candler G V. Hypersonic inward turning inlets: design and optimization. AIAA-2006-297, 2006.