材料工程与机械制造

大型飞机机身调姿与对接试验系统

展开
  • 浙江大学 流体传动及控制国家重点实验室, 浙江 杭州 310027
邱宝贵(1980- ) 男,博士研究生。主要研究方向:先进制造技术与装备、CAD/CAM/CAE、飞机数字化装配。 E-mail: qiubaogui@zju.edu.cn蒋君侠(1968- ) 男,硕士,高级工程师。主要研究方向:先进制造技术与装备、CAD/CAM/CAE、飞机数字化装配。 Tel: 0571-87953930 E-mail: junxia.jiang@126.com毕运波(1979- ) 男,博士,讲师。主要研究方向:先进制造技术、加工过程动态物理仿真、CAD/CAM/CAE。 E-mail: zjubyb@zju.edu.cn方强(1975- ) 男,博士,副研究员。主要研究方向:先进制造技术。 E-mail: fangqiang@zju.edu.cn王青(1979- ) 男,博士,副研究员。主要研究方向:反求工程、飞机数字化装配。 E-mail: uphover@163.com詹建潮(1956- ) 男,硕士,副教授。主要研究方向:机电一体化。 E-mail: zdht@cmee.zju.edu.cn李江雄(1956- ) 男,博士,副教授。主要研究方向:反求工程、管道机器人、飞机数字化装配。 E-mail: ljxiong@zju.edu.cn柯映林(1963- ) 男,博士,教授,博士生导师。主要研究方向:反求工程、CAD/CAM/CAE、先进制造技术与装备、飞机数字化装配。 E-mail: ylke@zju.edu.cn

收稿日期: 2010-08-16

  修回日期: 2010-09-09

  网络出版日期: 2011-05-19

基金资助

国家自然科学基金(50905161)

Posture Alignment and Joining Test System for Large Aircraft Fuselages

Expand
  • The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China

Received date: 2010-08-16

  Revised date: 2010-09-09

  Online published: 2011-05-19

摘要

为实现飞机大部件装配过程的数字化、自动化和柔性化,研制了大型飞机机身调姿与对接试验系统。阐述了该系统的工作原理,通过激光跟踪仪测量试验机身上的检测点,集成管理系统计算试验机身的位姿,控制系统驱动多个三坐标数控定位器协同运动,实现试验机身的调姿与对接。建立了位姿调整机构的运动学模型,针对构建的硬件平台完成了包括集成管理系统、测量系统和控制系统在内的软件开发与集成,并对系统的性能进行了测试。试验结果表明,试验机身的位置调整精度优于0.09 mm,姿态调整精度优于0.000 5°。试验系统涉及的若干关键技术已成功应用于多项国家重点型号工程,大幅提高了飞机装配的质量和效率。

本文引用格式

邱宝贵, 蒋君侠, 毕运波, 方强, 王青, 詹建潮, 李江雄, 柯映林 . 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011 , 32(5) : 908 -919 . DOI: CNKI:11-1929/V_20101101.1739.000

Abstract

To realize numeralization, automation and flexibility during large aircraft components assembly, a novel posture alignment and joining test system for large aircraft fuselages is developed. Firstly, the working principle of the test system is introduced. Based on test-fuselages’ measurement data from the laser tracker, test-fuselages’ postures are calculated by integrated management system, and several three coordinate numerical control localizers are driven to move harmoniously by control system, to achieve test-fuselages’ posture alignment and joining. Secondly, the kinematics model for the posture alignment system is established. The relevant software, including integrated management system, measure system and control system, are developed and integrated on the basis of the hardware platform. Finally, the test system is applied to simulate test-fuselages’ posture alignment and joining. Experimental results show that test-fuselages’ position alignment precision is better than 0.09 mm, and test-fuselages’ posture alignment precision is better than 0.000 5°. Some technologies of the test system have been successfully applied in several national key projects, which can greatly improve the quality and efficiency of the aircraft assembly.

参考文献

[1] 胡晓峰. 寻梦大飞机[M]. 北京: 航空工业出版社, 2007: 18-30. Hu Xiaofeng. The search for a dream of large aicraft[M]. Beijing: Aviation Industry Press, 2007: 18-30. (in Chinese)

[2] 邹冀华, 刘志存, 范玉青. 大型飞机部件数字化对接装配技术研究[J]. 计算机集成制造系统, 2007, 13(7): 1367-1373. Zou Jihua, Liu Zhicun, Fan Yuqing. Large-size airplane parts digital assembly technology[J]. Computer Integrated Manufacturing Systems, 2007, 13(7): 1367-1373. (in Chinese)

[3] 范玉青. 现代飞机制造技术[M]. 北京: 北京航空航天大学出版社, 2001: 16-57. Fan Yuqing. Modern airplane manufacture technology[M]. Beijing: Beihang University Press, 2001: 16-57. (in Chinese)

[4] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3): 734-740. Xu Guokang. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 734-740. (in Chinese)

[5] Liu J H, Zou C. Intelligent robotics and applications[M]. Heidelberg: Springer Berlin Press, 2008: 679-687.

[6] Zhang B, Yao B G, Ke Y L. A novel posture alignment system for aircraft wing assembly[J]. Journal of Zhejiang University Science A, 2009, 10(11): 1624-1630.

[7] Xiong R B, Ke Y L, Huang P J. An adaptive posture following and keeping fixture based on aerostatic bearing and universal ball joint for aircraft digital assembly //Advances in Materials Manufacturing Science and Technology XIII Volume 1. Switzerland: Trans Tech Publications Ltd., 2009: 623-628.

[8] Williams G, Chalupa E, Rahhal S. Automated positioning and alignment systems[J]. SAE Transactions, 2000, 109(11): 737-745.

[9] Naing S, Corbett J. Feature based design for jigless assembly. Bedfordshire: School of Industrial and Manufacturing Science, Cranfield University, 2004.

[10] 柯映林, 杨卫东, 李江雄,等. 一种基于四个定位器的飞机部件位姿调整系统及方法: 中国, CN200810161668.9. 2009-02-11. Ke Yinglin, Yang Weidong, Li Jiangxiong, et al. A system and method of aircraft part posture alignment based on four localizers: China, CN200810161668.9. 2009-02-11. (in Chinese)

[11] 张曙, Heisel U. 并联运动机床[M]. 北京: 机械工业出版社, 2003: 38-44. Zhang Shu, Heisel U. Parallel kinematics machine tool [M]. Beijing: China Machine Press, 2003: 38-44. (in Chinese)

[12] 柯映林, 方强, 余进海, 等. 飞机部件位姿调整路径规划方法: 中国, CN200810161671. 0. 2009-02-11. Ke Yinglin, Fang Qiang, Yu Jinhai, et al. The trajectory planning method of aircraft part posture alignment: China, CN200810161671. 0. 2009-02-11. (in Chinese)

[13] 庄茁,由小川,廖剑晖, 等. 基于ABAQUS的有限元分析和应用[M]. 北京: 清华大学出版社, 2009: 3-12. Zhuang Zhuo, You Xiaochuan, Liao Jianhui, et al. FEM analysis and application based on ABAQUS[M]. Beijing: Tsinghua University Press, 2009: 3-12. (in Chinese)

[14] 俞慈君,李江雄,余锋杰, 等. 带工程约束的点匹配算法[J]. 机械工程学报, 2010, 46(5): 183-190. Yu Cijun, Li Jiangxiong, Yu Fengjie, et al. 3D points registration algorithm with engineering constraints[J]. Journal of Mechanical Engineering, 2010, 46(5): 183-190. (in Chinese)

[15] 柯映林, 杨卫东, 李江雄, 等. 基于激光跟踪仪的飞机机身姿态计算方法: 中国, CN200810121358.4. 2009-02-11. Ke Yinglin, Yang Weidong, Li Jiangxiong, et al. Aircraft fuselages posture algorithm based on the laser tracker: China, CN200810121358.4. 2009-02-11. (in Chinese)
文章导航

/