基于粗大边缘的异源图像匹配在导航制导等领域具有广阔的应用前景,但是现有边缘检测方法很难提取出异源图像中的粗大边缘。根据异源图像成像原理和灰度分布特点,提出一种基于力场转换理论的异源图像粗大边缘检测新方法。首先,根据引力概念计算图像中各像素点受到合力的大小和方向;其次,为了去除光照和异源图像灰度不同的影响,对图像中像素点所受合力的大小进行归一化处理;然后,对归一化后的图像进行二值化分割以获得边缘像素点所在的区域;最后,通过实验研究粗大边缘像素点的合力大小和方向特征,由此得到了粗大边缘点的确定方法。实验结果表明:与Canny边缘检测方法相比,该方法对异源图像间的粗大边缘具有很好的边缘检测效果,与先分割再提取边缘的方法相比,该方法可以提取灰度值分布较集中且噪声较大的红外(IR)图像粗大边缘。
Multi-modality image matching based on gross edges has a wide application prospect, but traditional edge detection algorithms are not able to extract good gross edge features. In this paper, a novel edge detection algorithm based on force field transformation is proposed according to the imaging principle and the gray distribution of multi-modality images. Firstly, the force field magnitude and direction of each pixel can be calculated by the concept of gravitational force. Secondly, in order to eliminate the impact of changeable illumination and the difference between gray distributions, the force field magnitude of each pixel is normalized. Then, the region of the edge can be obtained through binary processing of the normalized image. Finally, the properties of the force magnitude and the direction at the gross edge region are analyzed, and the gross edge detection method is proposed accordingly. Experimental results show that the proposed algorithm performs better than the traditional algorithms, and it performs better than the method of detecting the edge on segmenting images for ifrared (IR) image.
[1] 陈亮, 郭雷, 刘坤, 等.基于分块梯度直方图的边缘检测[J].光电工程, 2009, 36(8): 100-104. Chen Liang, Guo Lei, Liu Kun, et al.Edge detection based on blocked gradient gistogram[J].Opto-Electronic Engineering, 2009, 36(8): 100-104.(in Chinese)
[2] 孙达, 刘家锋, 唐降龙.基于概率密度梯度的边缘检测[J].计算机学报, 2009, 32(2): 299-306. Sun Da, Liu Jiafeng, Tang Xianglong.Edge detection based on density gradient[J].Chinese Journal of Computers, 2009, 32(2): 299-306.(in Chinese)
[3] 王磊, 杨付正, 常义林, 等.基于空间复杂度掩盖的边缘检测算法[J].中国图象图形学报, 2008, 13(1): 100-103. Wang Lei, Yang Fuzheng, Chang Yilin, et al.An edge-detection algorithm based on spatial activity masking[J].Journal of Image and Graphics, 2008, 13(1): 100-103.(in Chinese)
[4] 潘晴, 严国萍, 张玉宽.基于人眼视觉注视机制下突触短时可塑性的图像边缘检测算法[J].中国图象图形学报, 2008, 13(7): 1316-1321. Pan Qing, Yan Guoping, Zhang Yukuan.An edge detection algorithm based on short-term synaptic plasticity in gazing mechanism in HVS[J].Journal of Image and Graphics, 2008, 13(7): 1316-1321.(in Chinese)
[5] Li Z J, Liu Y K, Yun J, et al.A new edge detection method based on contrast enhancement//2009 International Conference on Future BioMedical Information Engineering.2009: 164-167.
[6] Sun X K, Sun G Y.A new noise-resistant algorithm for edge detection//2010 Second International Workshop on Education Technology and Computer Science.2010: 47-49.
[7] Setayesh M, Zhang M J, Johnston M.A new homogeneity-based approach to edge detection using PSO//24th International Conference Image and Vision Computing New Zealand (IVCNZ 2009).2009: 231-236.
[8] 章凤翎, 徐贵力, 张勇, 等.融合颜色和纹理信息的彩色图像分割//2009年全国模式识别学术会议.2009: 290-293. Zhang Fengling, Xu Guili, Zhang Yong, et al.Color image segmentation using combined information of color and texture//2009 Chinese Conference on Pattern Recognition.2009: 290-293.(in Chinese)
[9] 康文雄, 邓飞其.基于方向场分布率的静脉图像分割方法[J].自动化学报, 2009, 35(12): 1496-1520. Kang Wenxiong, Deng Feiqi.Vein image segmentation based on distribution ratio of directional fields[J]. Acta Automatica Sinica, 2009, 35(12): 1496-1520.(in Chinese)
[10] Agaian S S, Panetta K A, Nercessian S C, et al.Boolean derivatives with application to edge detection for imaging systems [J].IEEE Transactions on System,Man, and Cybernetics—Part B: Cybernetics, 2010, 40(2): 371-382.
[11] Hurley D J, Nixon M S, Carter J N.A new force field transform for ear and face recognition //2000 International Conference on Image Processing.2000: 25-28.
[12] Hurley D J, Nixon M S, Carter J N. Automatic ear recognition by force field transformations //IEE Colloquium on Visual Biometrics.2000: 7/1-7/5.
[13] Dong J Y, Mu Z C.Multi-pose ear recognition based on force field transformation//Second International Symposium on Intelligent Information Technology Application.2008: 771-775.
[14] 朱海华, 李雅娟, 宋志坚.基于图像力场转换的耳廓图像识别[J].自动化学报, 2006, 32(4): 512-517. Zhu Haihua, Li Yajuan, Song Zhijian.Ear recognition based on image force field transformation [J].Acta Automatica Sinica, 2006, 32(4): 512-517.(in Chinese)
[15] 田莹, 苑玮琦.基于力场转换的人耳特征提取与识别[J].仪器仪表学报, 2009, 30(2): 318-322. Tian Ying, Yuan Weiqi.Ear feature extraction and recognition based on force field transformation[J].Chinese Journal of Scientific Instrument, 2009, 30(2): 318-322.(in Chinese)
[16] 王植, 贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报, 2004, 9(8): 957-962. Wang Zhi, He Saixian.An adaptive edge-detection method based on canny algorithm[J].Journal of Image and Graphics, 2004, 9(8): 957-962.(in Chinese)