固体力学与飞行器总体设计

发动机谐振与箭体模态耦合稳定性及机理研究

展开
  • 国防科学技术大学 航天与材料工程学院, 湖南 长沙 410073
李家文(1982- ) 男,博士研究生。主要研究方向:飞行器动力学与控制。 Tel: 0731-84574178 E-mail: hustljw@163.com 李道奎(1971- ) 男,博士,副教授,硕士生导师。主要研究方向:计算固体力学和飞行器结构分析。 Tel: 0731-84574178 E-mail: lidaokui@nudt.edu.cn 周建平(1957- ) 男,博士,教授,博士生导师。主要研究方向:载人航天工程总体设计。 Tel: 010-66350913 E-mail: 13331020818@189.com

收稿日期: 2010-05-25

  修回日期: 2010-08-23

  网络出版日期: 2011-05-19

Study on Coupling Stability and Mechanism Between Engine Harmonic Oscillation and Launch Vehicle’s Modes

Expand
  • College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073,China

Received date: 2010-05-25

  Revised date: 2010-08-23

  Online published: 2011-05-19

摘要

针对发动机谐振可能与箭体弹性振动之间发生耦合共振,从而引起姿态控制系统不稳定的问题,首先将发动机谐振特性简化为一个二阶环节,建立了包含发动机谐振方程的火箭姿态动力学模型;然后分析了发动机谐振对箭体模态极点频率和阻尼比的影响,并从理论上分析了出现负阻尼比时发动机和箭体模态间的耦合共振机理,在此基础上计算了导致姿态控制系统不稳定的发动机谐振频率边界;最后通过时域仿真验证了分析结果的正确性。结果表明,当发动机谐振频率较低时可能与箭体低阶弹性模态之间产生耦合共振,导致姿态角和姿态角速度出现振荡甚至发散现象,发动机谐振频率必须高于谐振频率边界最大值才能保证系统稳定。相关工作对姿态控制系统的设计具有一定价值。

本文引用格式

李家文, 李道奎, 周建平 . 发动机谐振与箭体模态耦合稳定性及机理研究[J]. 航空学报, 2011 , 32(5) : 822 -832 . DOI: CNKI:11-1929/V.20110310.1709.000

Abstract

In consideration of the instability of attitude control system caused by coupling resonance between engine harmonic oscillation and launch vehicle’s elastic vibration, dynamic coupling stability and mechanism between engine harmonic oscillation and launch vehicle’s modes are studied, and the engine harmonic oscillation frequency boundary due to the instability of attitude control system is also computed. Firstly, the dynamics of engine oscillation is simplified as a second order system, and an attitude dynamic model of launch vehicle including engine oscillation equations is derived. Then, the influence of engine oscillation on launch vehicle’s modal frequency and damping is analyzed, and the mechanism of coupling resonance between engine oscillation and launch vehicle’s modes when the modal damping is negative is also analyzed theoretically. Based on this, the engine oscillation frequency boundary which leads to the instability of attitude control system is also computed. Finally, the analytical results are validated by time domain simulation. The results show that coupling resonance between engine harmonic oscillation and low order mode will arise when the the engine oscillation frequency is lower, at that time the phenomenon of attitude angle and attitude angular velocity’s oscillation and divergence will appear. The stability requires that engine harmonic oscillation frequency is higher than the maximum of the harmonic oscillation frequency boundary. The studies in this paper can provide some references for the design of attitude control system.

参考文献

[1] 徐延万. 控制系统[M]. 北京: 中国宇航出版社, 1989. Xu Yanwan. Control system[M]. Beijing: China Astronautic Publishing House, 1989. (in Chinese)

[2] 朱忠惠. 推力矢量控制伺服系统[M]. 北京: 中国宇航出版社, 1995. Zhu Zhonghui. Servo system of thrust vector control[M]. Beijing: China Astronautic Pubishing House, 1995. (in Chinese)

[3] 赵迎鑫, 张晓莎, 赵守军, 等. 新型大推力发动机负载动态模型的获取和识别方法[J]. 流体传动与控制, 2008(5): 41-43. Zhao Yingxin, Zhang Xiaosha, Zhao Shoujun, et al. A method for obtaining and identifying dynamic model of a new engine with large thrust[J]. Fluid Power Transmission and Control, 2008(5): 41-43.(in Chinese)

[4] Soccodato C, Ruault J M. Ariane 5 launch vehicle—from concepts to future evolutions. AIAA-1999-2906, 1999.

[5] Sowers G. First flight—Atlas V evolved expendable launch vehicle. AIAA-2002-4204, 2002.

[6] Slazer F A, Harvey J C, Sirko R J, et al. Delta IV launch vehicle growth options to support NASA’s space exploration vision[J]. Acta Astronautica, 2005, 57(2-8): 604-613.

[7] Lillie C F,Dailey D, Polidan R S. Large aperture telescopes for launch with the Ares V launch vehicle[J]. Acta Astronautica, 2010, 66(3-4):374-381.

[8] K. C. 柯列斯尼可夫, B. H. 苏霍夫. 作为自动控制对象的弹性飞行器[M]. 关世义, 常伯浚, 译. 北京: 国防工业出版社, 1979. К.С. КОЛЕСНИКОВ, В.Н. СУХОВ. Flexible aerocraft as object of automatic control system[M]. Guan Shiyi, Chang Bojun, translated. Beijing: National Defense Industry Press, 1979. (in Chinese)

[9] Greensite A L. Analysis and design of space vehicle flight control system[M]. New York: Spartan Books, 1970.

[10] Dhekane M V, Lalithambika V R, Dasgupta D S, et al. Modeling of control/structure interaction in launch vehicle—a flight experience[J]. AIAA-1999-4132, 1999.

[11] Oheroi S, Janardhanan S, Bandyopadhyay B. Output feedback control of practical launch vehicle systems//Proceedings of the 2004 IEEE Intemational Conference on Control Applications. 2004.

[12] Graham R E, Center L R, Cleveland O. Effect of gimbal friction modeling technique on control stability and performance for centaur upper-stage. NASA-TM-89894, 1987.

[13] Dhabale A, Banavar R N, Dhekane M V. LQG controller designs from reduced order models for a launch vehicle[J]. Sadhana, 2008, 33(1): 1-14.

[14] 郑大钟. 线性系统理论[M]. 北京: 清华大学出版社, 2002. Zheng Dazhong. Linear system theory[M]. Beijing: Tsinghua University Press, 2002. (in Chinese)
文章导航

/