电子与自动控制

基于MRP的全局稳定的PID刚体姿态控制

展开
  • 北京航空航天大学 自动化科学与电气工程学院, 北京 100191
宿敬亚(1981- ) 女,博士研究生。主要研究方向:切换系统,姿态控制与仿真。 Tel: 010-82338767 E-mail: xiujingya@asee.buaa.edu.cn张瑞峰(1975- ) 男,博士研究生。主要研究方向:可靠飞行控制。 Tel: 010-82338767 E-mail: zhangruifengd635@gmail.com蔡开元(1965- ) 男,博士生导师。主要研究方向:软件可靠性与测试、可靠飞行控制、软件控制论。 Tel: 010-82338767 E-mail: kycai@buaa.edu.cn

收稿日期: 2010-08-02

  修回日期: 2010-09-29

  网络出版日期: 2011-04-25

基金资助

国家自然科学基金 (60904066)

Globally Stabilizing PID Attitude Control of Rigid Body Based on MRP

Expand
  • School of Automatic Science and Electronic Engineering, Beihang University, Beijing 100191, China

Received date: 2010-08-02

  Revised date: 2010-09-29

  Online published: 2011-04-25

摘要

针对刚性航天器姿态控制问题,建立了由修正Rodrigues参数(MRP)表示的混杂姿态模型,并基于此模型设计了一种具有迟滞特性的非线性比例-积分-微分(PID)切换控制器。该控制器包含一个对克里奥利力矩和期望机动力矩的前馈补偿项和一个用于消除轨迹跟踪误差的PID反馈项。通过一个特别的Lyapunov函数分析得到了全局渐进稳定的结果。该控制器可全局渐近跟踪期望姿态轨迹,无姿态转动的奇异值点,无展开现象,能够抑制常值干扰力矩,对测量噪声具有鲁棒性。针对一个航天器进行了大角度控制仿真实验,仿真结果验证了控制器具有渐近跟踪特性、可避免展开现象的特性以及对常值干扰和测量噪声的鲁棒性。

本文引用格式

宿敬亚, 张瑞峰, 蔡开元 . 基于MRP的全局稳定的PID刚体姿态控制[J]. 航空学报, 2011 , 32(4) : 710 -719 . DOI: CNKI:11-1929/V.2010111.0909.002

Abstract

For the attitude control of a rigid spacecraft, a hybrid attitude model with modified Rodrigues parameter (MRP) representation is constructed, based on which a nonlinear proportional-integral-derivative (PID) switching controller with hysteresis is proposed. The proposed controller consists of a feed-forward term, which is used to compensate for the Coriolis torque and the desired maneuver torque, and a feedback term with PID structure, which is used to eliminate the attitude trajectory tracking error. Global asymptotic stability is guaranteed by defining a particular Lyapunov function. The proposed controller is able to achieve global asymptotic tracking of the desired attitude trajectory, avoid singular orientation and unwinding, reject constant disturbance torques and it is robust against measurement noises. Simulation experiments on the large-angle attitude control of a rigid spacecraft are conducted, and the results show the asymptotical tracking property of the proposed controller as well as its avoidance of unwinding phenomenon and its robustness against constant disturbances and measurement noises.

参考文献

[1] Garber T B. Influence of constant disturbing torques on the motion of gravity-gradient stabilized satellites[J]. AIAA Journal, 1963, 1(4): 968-969.

[2] Shrivastava S K. Satellite attitude dynamics and control in the presence of environmental torques—a brief survey [J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6): 461-471.

[3] Show L L, Juang J C, Lin C T, et al. Spacecraft robust attitude tracking design: PID control approach//Proceedings of the 2002 American Control Conference. 2002: 1360-1365.

[4] Uang H J, Lien C C. Mixed H2/H PID tracking control design for uncertain spacecraft systems using a cerebellar model articulation controller[J]. IEE Proceedings Control Theory and Applications, 2006, 153(1): 1-13.

[5] Subbarao K. Nonlinear PID-like controllers for rigid-body attitude stabilization[J]. Journal of the Astronautical Sciences, 2004, 52(1/2): 61-74.

[6] Li C J, Ma G F. Adaptive backstepping control for attitude tracking of a spacecraft//IEEE International Symposium on Industrial Electronics. 2007: 83-88.

[7] Subbarao K, Akella R M. Differentiator-free nonlinear proportional-integral controllers for rigid-body attitude stabilization[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1092-1096.

[8] Mayhew C G, Sanfelice R G, Teel A R. Robust global asymptotic attitude stabilization of a rigid body by quaternion-based hybrid feedback//Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. 2009: 2522-2527.

[9] Fragopoulos D, Innocenti M. Stability considerations in quaternion attitude control using discontinuous Lyapunov functions[J]. IEE Proceedings Control Theory and Applications, 2004, 151(3): 253-258.

[10] Schaub H, Junkins J L. Stereographic orientation parameters for attitude dynamics: a generalization of the Rodrigues parameters[J]. Journal of the Astronautical Sciences, 1996, 44(1): 1-20.

[11] Su J, Cai K Y. Globally stabilizing proportional-integral-derivative control laws for rigid-body attitude tracking [J]. Journal of Guidance, Control, and Dynamics (in press).

[12] Chen J Z, Yuan J P, Fang Q. Flight vehicle attitude determination using the modified Rodrigues parameters [J]. Chinese Journal of Aeronautics, 2008, 21(5): 433-440.

[13] Akella M R. Rigid body attitude tracking without angular velocity feedback[J]. Systems & Control Letters, 2004, 42(4): 321-326.

[14] Sanfelice R G. Robust hybrid control systems. Santa Barbara: University of California, 2007.

[15] Sanfelice R G, Messina M J, Tuna S E, et al. Robust hybrid controllers for continuous-time systems with applications to obstacle avoidance and regulation to disconnected set of points//Proceedings of the 2006 American Control Conference. 2006: 3352-3357.

[16] Goebel R, Teel A R. Solutions to hybrid inclusions via set and graphical convergence with stability theory applications[J]. Automatica, 2006, 42(4): 573-587.

[17] Khalil H. Nonlinear systems[M]. Upper Saddle River: Prentice Hall, 2002: 128.
文章导航

/